Metamath Proof Explorer


Theorem sqrtcvallem1

Description: Two ways of saying a complex number does not lie on the positive real axis. Lemma for sqrtcval . (Contributed by RP, 17-May-2024)

Ref Expression
Hypothesis sqrtcvallem1.1 φA
Assertion sqrtcvallem1 φA=0A0¬A+

Proof

Step Hyp Ref Expression
1 sqrtcvallem1.1 φA
2 eldif A+A¬A+
3 2 a1i φA+A¬A+
4 imor A=0A0¬A=0A0
5 1 biantrurd φ¬AA¬A
6 reim0b AAA=0
7 1 6 syl φAA=0
8 7 notbid φ¬A¬A=0
9 8 bicomd φ¬A=0¬A
10 eleq1 x=AxA
11 10 notbid x=A¬x¬A
12 11 elrab Ax|¬xA¬A
13 12 a1i φAx|¬xA¬A
14 5 9 13 3bitr4d φ¬A=0Ax|¬x
15 1 biantrurd φ¬0<AA¬0<A
16 1 recld φA
17 0red φ0
18 16 17 lenltd φA0¬0<A
19 fveq2 x=Ax=A
20 19 breq2d x=A0<x0<A
21 20 notbid x=A¬0<x¬0<A
22 21 elrab Ax|¬0<xA¬0<A
23 22 a1i φAx|¬0<xA¬0<A
24 15 18 23 3bitr4d φA0Ax|¬0<x
25 14 24 orbi12d φ¬A=0A0Ax|¬xAx|¬0<x
26 4 25 bitrid φA=0A0Ax|¬xAx|¬0<x
27 elun Ax|¬xx|¬0<xAx|¬xAx|¬0<x
28 27 a1i φAx|¬xx|¬0<xAx|¬xAx|¬0<x
29 ianor ¬x0<x¬x¬0<x
30 29 bicomi ¬x¬0<x¬x0<x
31 elrp x+x0<x
32 rere xx=x
33 32 breq2d x0<x0<x
34 33 bicomd x0<x0<x
35 34 pm5.32i x0<xx0<x
36 31 35 bitri x+x0<x
37 30 36 xchbinxr ¬x¬0<x¬x+
38 37 rabbii x|¬x¬0<x=x|¬x+
39 unrab x|¬xx|¬0<x=x|¬x¬0<x
40 dfdif2 +=x|¬x+
41 38 39 40 3eqtr4i x|¬xx|¬0<x=+
42 41 a1i φx|¬xx|¬0<x=+
43 42 eleq2d φAx|¬xx|¬0<xA+
44 26 28 43 3bitr2d φA=0A0A+
45 1 biantrurd φ¬A+A¬A+
46 3 44 45 3bitr4d φA=0A0¬A+