Metamath Proof Explorer


Theorem srgpcomp

Description: If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019)

Ref Expression
Hypotheses srgpcomp.s S=BaseR
srgpcomp.m ×˙=R
srgpcomp.g G=mulGrpR
srgpcomp.e ×˙=G
srgpcomp.r φRSRing
srgpcomp.a φAS
srgpcomp.b φBS
srgpcomp.k φK0
srgpcomp.c φA×˙B=B×˙A
Assertion srgpcomp φK×˙B×˙A=A×˙K×˙B

Proof

Step Hyp Ref Expression
1 srgpcomp.s S=BaseR
2 srgpcomp.m ×˙=R
3 srgpcomp.g G=mulGrpR
4 srgpcomp.e ×˙=G
5 srgpcomp.r φRSRing
6 srgpcomp.a φAS
7 srgpcomp.b φBS
8 srgpcomp.k φK0
9 srgpcomp.c φA×˙B=B×˙A
10 oveq1 x=0x×˙B=0×˙B
11 10 oveq1d x=0x×˙B×˙A=0×˙B×˙A
12 10 oveq2d x=0A×˙x×˙B=A×˙0×˙B
13 11 12 eqeq12d x=0x×˙B×˙A=A×˙x×˙B0×˙B×˙A=A×˙0×˙B
14 13 imbi2d x=0φx×˙B×˙A=A×˙x×˙Bφ0×˙B×˙A=A×˙0×˙B
15 oveq1 x=yx×˙B=y×˙B
16 15 oveq1d x=yx×˙B×˙A=y×˙B×˙A
17 15 oveq2d x=yA×˙x×˙B=A×˙y×˙B
18 16 17 eqeq12d x=yx×˙B×˙A=A×˙x×˙By×˙B×˙A=A×˙y×˙B
19 18 imbi2d x=yφx×˙B×˙A=A×˙x×˙Bφy×˙B×˙A=A×˙y×˙B
20 oveq1 x=y+1x×˙B=y+1×˙B
21 20 oveq1d x=y+1x×˙B×˙A=y+1×˙B×˙A
22 20 oveq2d x=y+1A×˙x×˙B=A×˙y+1×˙B
23 21 22 eqeq12d x=y+1x×˙B×˙A=A×˙x×˙By+1×˙B×˙A=A×˙y+1×˙B
24 23 imbi2d x=y+1φx×˙B×˙A=A×˙x×˙Bφy+1×˙B×˙A=A×˙y+1×˙B
25 oveq1 x=Kx×˙B=K×˙B
26 25 oveq1d x=Kx×˙B×˙A=K×˙B×˙A
27 25 oveq2d x=KA×˙x×˙B=A×˙K×˙B
28 26 27 eqeq12d x=Kx×˙B×˙A=A×˙x×˙BK×˙B×˙A=A×˙K×˙B
29 28 imbi2d x=Kφx×˙B×˙A=A×˙x×˙BφK×˙B×˙A=A×˙K×˙B
30 3 1 mgpbas S=BaseG
31 eqid 1R=1R
32 3 31 ringidval 1R=0G
33 30 32 4 mulg0 BS0×˙B=1R
34 7 33 syl φ0×˙B=1R
35 34 oveq1d φ0×˙B×˙A=1R×˙A
36 1 2 31 srgridm RSRingASA×˙1R=A
37 5 6 36 syl2anc φA×˙1R=A
38 34 oveq2d φA×˙0×˙B=A×˙1R
39 1 2 31 srglidm RSRingAS1R×˙A=A
40 5 6 39 syl2anc φ1R×˙A=A
41 37 38 40 3eqtr4rd φ1R×˙A=A×˙0×˙B
42 35 41 eqtrd φ0×˙B×˙A=A×˙0×˙B
43 3 srgmgp RSRingGMnd
44 5 43 syl φGMnd
45 44 adantr φy0GMnd
46 simpr φy0y0
47 7 adantr φy0BS
48 3 2 mgpplusg ×˙=+G
49 30 4 48 mulgnn0p1 GMndy0BSy+1×˙B=y×˙B×˙B
50 45 46 47 49 syl3anc φy0y+1×˙B=y×˙B×˙B
51 50 oveq1d φy0y+1×˙B×˙A=y×˙B×˙B×˙A
52 9 eqcomd φB×˙A=A×˙B
53 52 adantr φy0B×˙A=A×˙B
54 53 oveq2d φy0y×˙B×˙B×˙A=y×˙B×˙A×˙B
55 5 adantr φy0RSRing
56 30 4 45 46 47 mulgnn0cld φy0y×˙BS
57 6 adantr φy0AS
58 1 2 srgass RSRingy×˙BSBSASy×˙B×˙B×˙A=y×˙B×˙B×˙A
59 55 56 47 57 58 syl13anc φy0y×˙B×˙B×˙A=y×˙B×˙B×˙A
60 1 2 srgass RSRingy×˙BSASBSy×˙B×˙A×˙B=y×˙B×˙A×˙B
61 55 56 57 47 60 syl13anc φy0y×˙B×˙A×˙B=y×˙B×˙A×˙B
62 54 59 61 3eqtr4d φy0y×˙B×˙B×˙A=y×˙B×˙A×˙B
63 51 62 eqtrd φy0y+1×˙B×˙A=y×˙B×˙A×˙B
64 63 adantr φy0y×˙B×˙A=A×˙y×˙By+1×˙B×˙A=y×˙B×˙A×˙B
65 oveq1 y×˙B×˙A=A×˙y×˙By×˙B×˙A×˙B=A×˙y×˙B×˙B
66 1 2 srgass RSRingASy×˙BSBSA×˙y×˙B×˙B=A×˙y×˙B×˙B
67 55 57 56 47 66 syl13anc φy0A×˙y×˙B×˙B=A×˙y×˙B×˙B
68 50 eqcomd φy0y×˙B×˙B=y+1×˙B
69 68 oveq2d φy0A×˙y×˙B×˙B=A×˙y+1×˙B
70 67 69 eqtrd φy0A×˙y×˙B×˙B=A×˙y+1×˙B
71 65 70 sylan9eqr φy0y×˙B×˙A=A×˙y×˙By×˙B×˙A×˙B=A×˙y+1×˙B
72 64 71 eqtrd φy0y×˙B×˙A=A×˙y×˙By+1×˙B×˙A=A×˙y+1×˙B
73 72 ex φy0y×˙B×˙A=A×˙y×˙By+1×˙B×˙A=A×˙y+1×˙B
74 73 expcom y0φy×˙B×˙A=A×˙y×˙By+1×˙B×˙A=A×˙y+1×˙B
75 74 a2d y0φy×˙B×˙A=A×˙y×˙Bφy+1×˙B×˙A=A×˙y+1×˙B
76 14 19 24 29 42 75 nn0ind K0φK×˙B×˙A=A×˙K×˙B
77 8 76 mpcom φK×˙B×˙A=A×˙K×˙B