Metamath Proof Explorer


Theorem ssimaex

Description: The existence of a subimage. (Contributed by NM, 8-Apr-2007)

Ref Expression
Hypothesis ssimaex.1 AV
Assertion ssimaex FunFBFAxxAB=Fx

Proof

Step Hyp Ref Expression
1 ssimaex.1 AV
2 dmres domFA=AdomF
3 2 imaeq2i FdomFA=FAdomF
4 imadmres FdomFA=FA
5 3 4 eqtr3i FAdomF=FA
6 5 sseq2i BFAdomFBFA
7 ssrab2 yAdomF|FyBAdomF
8 ssel2 BFAdomFzBzFAdomF
9 8 adantll FunFBFAdomFzBzFAdomF
10 fvelima FunFzFAdomFwAdomFFw=z
11 10 ex FunFzFAdomFwAdomFFw=z
12 11 adantr FunFzBzFAdomFwAdomFFw=z
13 eleq1a zBFw=zFwB
14 13 anim2d zBwAdomFFw=zwAdomFFwB
15 fveq2 y=wFy=Fw
16 15 eleq1d y=wFyBFwB
17 16 elrab wyAdomF|FyBwAdomFFwB
18 14 17 syl6ibr zBwAdomFFw=zwyAdomF|FyB
19 simpr wAdomFFw=zFw=z
20 18 19 jca2 zBwAdomFFw=zwyAdomF|FyBFw=z
21 20 reximdv2 zBwAdomFFw=zwyAdomF|FyBFw=z
22 21 adantl FunFzBwAdomFFw=zwyAdomF|FyBFw=z
23 funfn FunFFFndomF
24 inss2 AdomFdomF
25 7 24 sstri yAdomF|FyBdomF
26 fvelimab FFndomFyAdomF|FyBdomFzFyAdomF|FyBwyAdomF|FyBFw=z
27 25 26 mpan2 FFndomFzFyAdomF|FyBwyAdomF|FyBFw=z
28 23 27 sylbi FunFzFyAdomF|FyBwyAdomF|FyBFw=z
29 28 adantr FunFzBzFyAdomF|FyBwyAdomF|FyBFw=z
30 22 29 sylibrd FunFzBwAdomFFw=zzFyAdomF|FyB
31 12 30 syld FunFzBzFAdomFzFyAdomF|FyB
32 31 adantlr FunFBFAdomFzBzFAdomFzFyAdomF|FyB
33 9 32 mpd FunFBFAdomFzBzFyAdomF|FyB
34 33 ex FunFBFAdomFzBzFyAdomF|FyB
35 fvelima FunFzFyAdomF|FyBwyAdomF|FyBFw=z
36 35 ex FunFzFyAdomF|FyBwyAdomF|FyBFw=z
37 eleq1 Fw=zFwBzB
38 37 biimpcd FwBFw=zzB
39 38 adantl wAdomFFwBFw=zzB
40 17 39 sylbi wyAdomF|FyBFw=zzB
41 40 rexlimiv wyAdomF|FyBFw=zzB
42 36 41 syl6 FunFzFyAdomF|FyBzB
43 42 adantr FunFBFAdomFzFyAdomF|FyBzB
44 34 43 impbid FunFBFAdomFzBzFyAdomF|FyB
45 44 eqrdv FunFBFAdomFB=FyAdomF|FyB
46 1 inex1 AdomFV
47 46 rabex yAdomF|FyBV
48 sseq1 x=yAdomF|FyBxAdomFyAdomF|FyBAdomF
49 imaeq2 x=yAdomF|FyBFx=FyAdomF|FyB
50 49 eqeq2d x=yAdomF|FyBB=FxB=FyAdomF|FyB
51 48 50 anbi12d x=yAdomF|FyBxAdomFB=FxyAdomF|FyBAdomFB=FyAdomF|FyB
52 47 51 spcev yAdomF|FyBAdomFB=FyAdomF|FyBxxAdomFB=Fx
53 7 45 52 sylancr FunFBFAdomFxxAdomFB=Fx
54 inss1 AdomFA
55 sstr xAdomFAdomFAxA
56 54 55 mpan2 xAdomFxA
57 56 anim1i xAdomFB=FxxAB=Fx
58 57 eximi xxAdomFB=FxxxAB=Fx
59 53 58 syl FunFBFAdomFxxAB=Fx
60 6 59 sylan2br FunFBFAxxAB=Fx