Description: This lemma proves that sets U(t) as defined in Lemma 1 of BrosowskiDeutsh p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem50.1 | |
|
stoweidlem50.2 | |
||
stoweidlem50.3 | |
||
stoweidlem50.4 | |
||
stoweidlem50.5 | |
||
stoweidlem50.6 | |
||
stoweidlem50.7 | |
||
stoweidlem50.8 | |
||
stoweidlem50.9 | |
||
stoweidlem50.10 | |
||
stoweidlem50.11 | |
||
stoweidlem50.12 | |
||
stoweidlem50.13 | |
||
stoweidlem50.14 | |
||
stoweidlem50.15 | |
||
Assertion | stoweidlem50 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem50.1 | |
|
2 | stoweidlem50.2 | |
|
3 | stoweidlem50.3 | |
|
4 | stoweidlem50.4 | |
|
5 | stoweidlem50.5 | |
|
6 | stoweidlem50.6 | |
|
7 | stoweidlem50.7 | |
|
8 | stoweidlem50.8 | |
|
9 | stoweidlem50.9 | |
|
10 | stoweidlem50.10 | |
|
11 | stoweidlem50.11 | |
|
12 | stoweidlem50.12 | |
|
13 | stoweidlem50.13 | |
|
14 | stoweidlem50.14 | |
|
15 | stoweidlem50.15 | |
|
16 | nfrab1 | |
|
17 | 4 16 | nfcxfr | |
18 | nfv | |
|
19 | 9 7 | sseqtrdi | |
20 | 8 | uniexd | |
21 | 6 20 | eqeltrid | |
22 | 1 17 18 2 3 4 5 6 8 19 10 11 12 13 14 15 21 | stoweidlem46 | |
23 | dfin4 | |
|
24 | elssuni | |
|
25 | 14 24 | syl | |
26 | 25 6 | sseqtrrdi | |
27 | sseqin2 | |
|
28 | 26 27 | sylib | |
29 | 23 28 | eqtr3id | |
30 | 29 14 | eqeltrd | |
31 | cmptop | |
|
32 | 8 31 | syl | |
33 | difssd | |
|
34 | 6 | iscld2 | |
35 | 32 33 34 | syl2anc | |
36 | 30 35 | mpbird | |
37 | cmpcld | |
|
38 | 8 36 37 | syl2anc | |
39 | 6 | cmpsub | |
40 | 32 33 39 | syl2anc | |
41 | 38 40 | mpbid | |
42 | ssrab2 | |
|
43 | 5 42 | eqsstri | |
44 | 5 8 | rabexd | |
45 | elpwg | |
|
46 | 44 45 | syl | |
47 | 43 46 | mpbiri | |
48 | unieq | |
|
49 | 48 | sseq2d | |
50 | pweq | |
|
51 | 50 | ineq1d | |
52 | 51 | rexeqdv | |
53 | 49 52 | imbi12d | |
54 | 53 | rspccva | |
55 | 41 47 54 | syl2anc | |
56 | 55 | imp | |
57 | df-rex | |
|
58 | 56 57 | sylib | |
59 | elinel2 | |
|
60 | 59 | ad2antrl | |
61 | elinel1 | |
|
62 | 61 | ad2antrl | |
63 | 62 | elpwid | |
64 | simprr | |
|
65 | 60 63 64 | 3jca | |
66 | 65 | ex | |
67 | 66 | eximdv | |
68 | 58 67 | mpd | |
69 | 22 68 | mpdan | |