Metamath Proof Explorer


Theorem stoweidlem50

Description: This lemma proves that sets U(t) as defined in Lemma 1 of BrosowskiDeutsh p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem50.1 _tU
stoweidlem50.2 tφ
stoweidlem50.3 K=topGenran.
stoweidlem50.4 Q=hA|hZ=0tT0htht1
stoweidlem50.5 W=wJ|hQw=tT|0<ht
stoweidlem50.6 T=J
stoweidlem50.7 C=JCnK
stoweidlem50.8 φJComp
stoweidlem50.9 φAC
stoweidlem50.10 φfAgAtTft+gtA
stoweidlem50.11 φfAgAtTftgtA
stoweidlem50.12 φxtTxA
stoweidlem50.13 φrTtTrtqAqrqt
stoweidlem50.14 φUJ
stoweidlem50.15 φZU
Assertion stoweidlem50 φuuFinuWTUu

Proof

Step Hyp Ref Expression
1 stoweidlem50.1 _tU
2 stoweidlem50.2 tφ
3 stoweidlem50.3 K=topGenran.
4 stoweidlem50.4 Q=hA|hZ=0tT0htht1
5 stoweidlem50.5 W=wJ|hQw=tT|0<ht
6 stoweidlem50.6 T=J
7 stoweidlem50.7 C=JCnK
8 stoweidlem50.8 φJComp
9 stoweidlem50.9 φAC
10 stoweidlem50.10 φfAgAtTft+gtA
11 stoweidlem50.11 φfAgAtTftgtA
12 stoweidlem50.12 φxtTxA
13 stoweidlem50.13 φrTtTrtqAqrqt
14 stoweidlem50.14 φUJ
15 stoweidlem50.15 φZU
16 nfrab1 _hhA|hZ=0tT0htht1
17 4 16 nfcxfr _hQ
18 nfv qφ
19 9 7 sseqtrdi φAJCnK
20 8 uniexd φJV
21 6 20 eqeltrid φTV
22 1 17 18 2 3 4 5 6 8 19 10 11 12 13 14 15 21 stoweidlem46 φTUW
23 dfin4 TU=TTU
24 elssuni UJUJ
25 14 24 syl φUJ
26 25 6 sseqtrrdi φUT
27 sseqin2 UTTU=U
28 26 27 sylib φTU=U
29 23 28 eqtr3id φTTU=U
30 29 14 eqeltrd φTTUJ
31 cmptop JCompJTop
32 8 31 syl φJTop
33 difssd φTUT
34 6 iscld2 JTopTUTTUClsdJTTUJ
35 32 33 34 syl2anc φTUClsdJTTUJ
36 30 35 mpbird φTUClsdJ
37 cmpcld JCompTUClsdJJ𝑡TUComp
38 8 36 37 syl2anc φJ𝑡TUComp
39 6 cmpsub JTopTUTJ𝑡TUCompc𝒫JTUcu𝒫cFinTUu
40 32 33 39 syl2anc φJ𝑡TUCompc𝒫JTUcu𝒫cFinTUu
41 38 40 mpbid φc𝒫JTUcu𝒫cFinTUu
42 ssrab2 wJ|hQw=tT|0<htJ
43 5 42 eqsstri WJ
44 5 8 rabexd φWV
45 elpwg WVW𝒫JWJ
46 44 45 syl φW𝒫JWJ
47 43 46 mpbiri φW𝒫J
48 unieq c=Wc=W
49 48 sseq2d c=WTUcTUW
50 pweq c=W𝒫c=𝒫W
51 50 ineq1d c=W𝒫cFin=𝒫WFin
52 51 rexeqdv c=Wu𝒫cFinTUuu𝒫WFinTUu
53 49 52 imbi12d c=WTUcu𝒫cFinTUuTUWu𝒫WFinTUu
54 53 rspccva c𝒫JTUcu𝒫cFinTUuW𝒫JTUWu𝒫WFinTUu
55 41 47 54 syl2anc φTUWu𝒫WFinTUu
56 55 imp φTUWu𝒫WFinTUu
57 df-rex u𝒫WFinTUuuu𝒫WFinTUu
58 56 57 sylib φTUWuu𝒫WFinTUu
59 elinel2 u𝒫WFinuFin
60 59 ad2antrl φTUWu𝒫WFinTUuuFin
61 elinel1 u𝒫WFinu𝒫W
62 61 ad2antrl φTUWu𝒫WFinTUuu𝒫W
63 62 elpwid φTUWu𝒫WFinTUuuW
64 simprr φTUWu𝒫WFinTUuTUu
65 60 63 64 3jca φTUWu𝒫WFinTUuuFinuWTUu
66 65 ex φTUWu𝒫WFinTUuuFinuWTUu
67 66 eximdv φTUWuu𝒫WFinTUuuuFinuWTUu
68 58 67 mpd φTUWuuFinuWTUu
69 22 68 mpdan φuuFinuWTUu