Metamath Proof Explorer


Theorem subgruhgredgd

Description: An edge of a subgraph of a hypergraph is a nonempty subset of its vertices. (Contributed by AV, 17-Nov-2020) (Revised by AV, 21-Nov-2020)

Ref Expression
Hypotheses subgruhgredgd.v V=VtxS
subgruhgredgd.i I=iEdgS
subgruhgredgd.g φGUHGraph
subgruhgredgd.s φSSubGraphG
subgruhgredgd.x φXdomI
Assertion subgruhgredgd φIX𝒫V

Proof

Step Hyp Ref Expression
1 subgruhgredgd.v V=VtxS
2 subgruhgredgd.i I=iEdgS
3 subgruhgredgd.g φGUHGraph
4 subgruhgredgd.s φSSubGraphG
5 subgruhgredgd.x φXdomI
6 eqid VtxG=VtxG
7 eqid iEdgG=iEdgG
8 eqid EdgS=EdgS
9 1 6 2 7 8 subgrprop2 SSubGraphGVVtxGIiEdgGEdgS𝒫V
10 4 9 syl φVVtxGIiEdgGEdgS𝒫V
11 simpr3 φVVtxGIiEdgGEdgS𝒫VEdgS𝒫V
12 subgruhgrfun GUHGraphSSubGraphGFuniEdgS
13 3 4 12 syl2anc φFuniEdgS
14 2 dmeqi domI=domiEdgS
15 5 14 eleqtrdi φXdomiEdgS
16 13 15 jca φFuniEdgSXdomiEdgS
17 16 adantr φVVtxGIiEdgGEdgS𝒫VFuniEdgSXdomiEdgS
18 2 fveq1i IX=iEdgSX
19 fvelrn FuniEdgSXdomiEdgSiEdgSXraniEdgS
20 18 19 eqeltrid FuniEdgSXdomiEdgSIXraniEdgS
21 17 20 syl φVVtxGIiEdgGEdgS𝒫VIXraniEdgS
22 edgval EdgS=raniEdgS
23 21 22 eleqtrrdi φVVtxGIiEdgGEdgS𝒫VIXEdgS
24 11 23 sseldd φVVtxGIiEdgGEdgS𝒫VIX𝒫V
25 7 uhgrfun GUHGraphFuniEdgG
26 3 25 syl φFuniEdgG
27 26 adantr φVVtxGIiEdgGEdgS𝒫VFuniEdgG
28 simpr2 φVVtxGIiEdgGEdgS𝒫VIiEdgG
29 5 adantr φVVtxGIiEdgGEdgS𝒫VXdomI
30 funssfv FuniEdgGIiEdgGXdomIiEdgGX=IX
31 30 eqcomd FuniEdgGIiEdgGXdomIIX=iEdgGX
32 27 28 29 31 syl3anc φVVtxGIiEdgGEdgS𝒫VIX=iEdgGX
33 3 adantr φVVtxGIiEdgGEdgS𝒫VGUHGraph
34 26 funfnd φiEdgGFndomiEdgG
35 34 adantr φVVtxGIiEdgGEdgS𝒫ViEdgGFndomiEdgG
36 subgreldmiedg SSubGraphGXdomiEdgSXdomiEdgG
37 4 15 36 syl2anc φXdomiEdgG
38 37 adantr φVVtxGIiEdgGEdgS𝒫VXdomiEdgG
39 7 uhgrn0 GUHGraphiEdgGFndomiEdgGXdomiEdgGiEdgGX
40 33 35 38 39 syl3anc φVVtxGIiEdgGEdgS𝒫ViEdgGX
41 32 40 eqnetrd φVVtxGIiEdgGEdgS𝒫VIX
42 eldifsn IX𝒫VIX𝒫VIX
43 24 41 42 sylanbrc φVVtxGIiEdgGEdgS𝒫VIX𝒫V
44 10 43 mpdan φIX𝒫V