Description: An edge of a subgraph of a hypergraph is a nonempty subset of its vertices. (Contributed by AV, 17-Nov-2020) (Revised by AV, 21-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subgruhgredgd.v | |
|
subgruhgredgd.i | |
||
subgruhgredgd.g | |
||
subgruhgredgd.s | |
||
subgruhgredgd.x | |
||
Assertion | subgruhgredgd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgruhgredgd.v | |
|
2 | subgruhgredgd.i | |
|
3 | subgruhgredgd.g | |
|
4 | subgruhgredgd.s | |
|
5 | subgruhgredgd.x | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 1 6 2 7 8 | subgrprop2 | |
10 | 4 9 | syl | |
11 | simpr3 | |
|
12 | subgruhgrfun | |
|
13 | 3 4 12 | syl2anc | |
14 | 2 | dmeqi | |
15 | 5 14 | eleqtrdi | |
16 | 13 15 | jca | |
17 | 16 | adantr | |
18 | 2 | fveq1i | |
19 | fvelrn | |
|
20 | 18 19 | eqeltrid | |
21 | 17 20 | syl | |
22 | edgval | |
|
23 | 21 22 | eleqtrrdi | |
24 | 11 23 | sseldd | |
25 | 7 | uhgrfun | |
26 | 3 25 | syl | |
27 | 26 | adantr | |
28 | simpr2 | |
|
29 | 5 | adantr | |
30 | funssfv | |
|
31 | 30 | eqcomd | |
32 | 27 28 29 31 | syl3anc | |
33 | 3 | adantr | |
34 | 26 | funfnd | |
35 | 34 | adantr | |
36 | subgreldmiedg | |
|
37 | 4 15 36 | syl2anc | |
38 | 37 | adantr | |
39 | 7 | uhgrn0 | |
40 | 33 35 38 39 | syl3anc | |
41 | 32 40 | eqnetrd | |
42 | eldifsn | |
|
43 | 24 41 42 | sylanbrc | |
44 | 10 43 | mpdan | |