Metamath Proof Explorer


Theorem submomnd

Description: A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018)

Ref Expression
Assertion submomnd M oMnd M 𝑠 A Mnd M 𝑠 A oMnd

Proof

Step Hyp Ref Expression
1 simpr M oMnd M 𝑠 A Mnd M 𝑠 A Mnd
2 omndtos M oMnd M Toset
3 2 adantr M oMnd M 𝑠 A Mnd M Toset
4 reldmress Rel dom 𝑠
5 4 ovprc2 ¬ A V M 𝑠 A =
6 5 fveq2d ¬ A V Base M 𝑠 A = Base
7 6 adantl M oMnd M 𝑠 A Mnd ¬ A V Base M 𝑠 A = Base
8 base0 = Base
9 7 8 eqtr4di M oMnd M 𝑠 A Mnd ¬ A V Base M 𝑠 A =
10 eqid Base M 𝑠 A = Base M 𝑠 A
11 eqid 0 M 𝑠 A = 0 M 𝑠 A
12 10 11 mndidcl M 𝑠 A Mnd 0 M 𝑠 A Base M 𝑠 A
13 12 ne0d M 𝑠 A Mnd Base M 𝑠 A
14 13 ad2antlr M oMnd M 𝑠 A Mnd ¬ A V Base M 𝑠 A
15 14 neneqd M oMnd M 𝑠 A Mnd ¬ A V ¬ Base M 𝑠 A =
16 9 15 condan M oMnd M 𝑠 A Mnd A V
17 resstos M Toset A V M 𝑠 A Toset
18 3 16 17 syl2anc M oMnd M 𝑠 A Mnd M 𝑠 A Toset
19 simplll M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b M oMnd
20 eqid M 𝑠 A = M 𝑠 A
21 eqid Base M = Base M
22 20 21 ressbas A V A Base M = Base M 𝑠 A
23 inss2 A Base M Base M
24 22 23 eqsstrrdi A V Base M 𝑠 A Base M
25 16 24 syl M oMnd M 𝑠 A Mnd Base M 𝑠 A Base M
26 25 ad2antrr M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b Base M 𝑠 A Base M
27 simplr1 M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b a Base M 𝑠 A
28 26 27 sseldd M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b a Base M
29 simplr2 M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b b Base M 𝑠 A
30 26 29 sseldd M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b b Base M
31 simplr3 M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b c Base M 𝑠 A
32 26 31 sseldd M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b c Base M
33 eqid M = M
34 20 33 ressle A V M = M 𝑠 A
35 16 34 syl M oMnd M 𝑠 A Mnd M = M 𝑠 A
36 35 adantr M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A M = M 𝑠 A
37 36 breqd M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M b a M 𝑠 A b
38 37 biimpar M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b a M b
39 eqid + M = + M
40 21 33 39 omndadd M oMnd a Base M b Base M c Base M a M b a + M c M b + M c
41 19 28 30 32 38 40 syl131anc M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b a + M c M b + M c
42 16 adantr M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A A V
43 20 39 ressplusg A V + M = + M 𝑠 A
44 42 43 syl M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A + M = + M 𝑠 A
45 44 oveqd M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a + M c = a + M 𝑠 A c
46 42 34 syl M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A M = M 𝑠 A
47 44 oveqd M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A b + M c = b + M 𝑠 A c
48 45 46 47 breq123d M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a + M c M b + M c a + M 𝑠 A c M 𝑠 A b + M 𝑠 A c
49 48 adantr M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b a + M c M b + M c a + M 𝑠 A c M 𝑠 A b + M 𝑠 A c
50 41 49 mpbid M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b a + M 𝑠 A c M 𝑠 A b + M 𝑠 A c
51 50 ex M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b a + M 𝑠 A c M 𝑠 A b + M 𝑠 A c
52 51 ralrimivvva M oMnd M 𝑠 A Mnd a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b a + M 𝑠 A c M 𝑠 A b + M 𝑠 A c
53 eqid + M 𝑠 A = + M 𝑠 A
54 eqid M 𝑠 A = M 𝑠 A
55 10 53 54 isomnd M 𝑠 A oMnd M 𝑠 A Mnd M 𝑠 A Toset a Base M 𝑠 A b Base M 𝑠 A c Base M 𝑠 A a M 𝑠 A b a + M 𝑠 A c M 𝑠 A b + M 𝑠 A c
56 1 18 52 55 syl3anbrc M oMnd M 𝑠 A Mnd M 𝑠 A oMnd