Metamath Proof Explorer


Theorem submomnd

Description: A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018)

Ref Expression
Assertion submomnd MoMndM𝑠AMndM𝑠AoMnd

Proof

Step Hyp Ref Expression
1 simpr MoMndM𝑠AMndM𝑠AMnd
2 omndtos MoMndMToset
3 2 adantr MoMndM𝑠AMndMToset
4 reldmress Reldom𝑠
5 4 ovprc2 ¬AVM𝑠A=
6 5 fveq2d ¬AVBaseM𝑠A=Base
7 6 adantl MoMndM𝑠AMnd¬AVBaseM𝑠A=Base
8 base0 =Base
9 7 8 eqtr4di MoMndM𝑠AMnd¬AVBaseM𝑠A=
10 eqid BaseM𝑠A=BaseM𝑠A
11 eqid 0M𝑠A=0M𝑠A
12 10 11 mndidcl M𝑠AMnd0M𝑠ABaseM𝑠A
13 12 ne0d M𝑠AMndBaseM𝑠A
14 13 ad2antlr MoMndM𝑠AMnd¬AVBaseM𝑠A
15 14 neneqd MoMndM𝑠AMnd¬AV¬BaseM𝑠A=
16 9 15 condan MoMndM𝑠AMndAV
17 resstos MTosetAVM𝑠AToset
18 3 16 17 syl2anc MoMndM𝑠AMndM𝑠AToset
19 simplll MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠AbMoMnd
20 eqid M𝑠A=M𝑠A
21 eqid BaseM=BaseM
22 20 21 ressbas AVABaseM=BaseM𝑠A
23 inss2 ABaseMBaseM
24 22 23 eqsstrrdi AVBaseM𝑠ABaseM
25 16 24 syl MoMndM𝑠AMndBaseM𝑠ABaseM
26 25 ad2antrr MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠AbBaseM𝑠ABaseM
27 simplr1 MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠AbaBaseM𝑠A
28 26 27 sseldd MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠AbaBaseM
29 simplr2 MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠AbbBaseM𝑠A
30 26 29 sseldd MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠AbbBaseM
31 simplr3 MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠AbcBaseM𝑠A
32 26 31 sseldd MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠AbcBaseM
33 eqid M=M
34 20 33 ressle AVM=M𝑠A
35 16 34 syl MoMndM𝑠AMndM=M𝑠A
36 35 adantr MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AM=M𝑠A
37 36 breqd MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaMbaM𝑠Ab
38 37 biimpar MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠AbaMb
39 eqid +M=+M
40 21 33 39 omndadd MoMndaBaseMbBaseMcBaseMaMba+McMb+Mc
41 19 28 30 32 38 40 syl131anc MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠Aba+McMb+Mc
42 16 adantr MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AAV
43 20 39 ressplusg AV+M=+M𝑠A
44 42 43 syl MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠A+M=+M𝑠A
45 44 oveqd MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠Aa+Mc=a+M𝑠Ac
46 42 34 syl MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AM=M𝑠A
47 44 oveqd MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠Ab+Mc=b+M𝑠Ac
48 45 46 47 breq123d MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠Aa+McMb+Mca+M𝑠AcM𝑠Ab+M𝑠Ac
49 48 adantr MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠Aba+McMb+Mca+M𝑠AcM𝑠Ab+M𝑠Ac
50 41 49 mpbid MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠Aba+M𝑠AcM𝑠Ab+M𝑠Ac
51 50 ex MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠Aba+M𝑠AcM𝑠Ab+M𝑠Ac
52 51 ralrimivvva MoMndM𝑠AMndaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠Aba+M𝑠AcM𝑠Ab+M𝑠Ac
53 eqid +M𝑠A=+M𝑠A
54 eqid M𝑠A=M𝑠A
55 10 53 54 isomnd M𝑠AoMndM𝑠AMndM𝑠ATosetaBaseM𝑠AbBaseM𝑠AcBaseM𝑠AaM𝑠Aba+M𝑠AcM𝑠Ab+M𝑠Ac
56 1 18 52 55 syl3anbrc MoMndM𝑠AMndM𝑠AoMnd