Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
omndtos |
|
3 |
2
|
adantr |
|
4 |
|
reldmress |
|
5 |
4
|
ovprc2 |
|
6 |
5
|
fveq2d |
|
7 |
6
|
adantl |
|
8 |
|
base0 |
|
9 |
7 8
|
eqtr4di |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
10 11
|
mndidcl |
|
13 |
12
|
ne0d |
|
14 |
13
|
ad2antlr |
|
15 |
14
|
neneqd |
|
16 |
9 15
|
condan |
|
17 |
|
resstos |
|
18 |
3 16 17
|
syl2anc |
|
19 |
|
simplll |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
20 21
|
ressbas |
|
23 |
|
inss2 |
|
24 |
22 23
|
eqsstrrdi |
|
25 |
16 24
|
syl |
|
26 |
25
|
ad2antrr |
|
27 |
|
simplr1 |
|
28 |
26 27
|
sseldd |
|
29 |
|
simplr2 |
|
30 |
26 29
|
sseldd |
|
31 |
|
simplr3 |
|
32 |
26 31
|
sseldd |
|
33 |
|
eqid |
|
34 |
20 33
|
ressle |
|
35 |
16 34
|
syl |
|
36 |
35
|
adantr |
|
37 |
36
|
breqd |
|
38 |
37
|
biimpar |
|
39 |
|
eqid |
|
40 |
21 33 39
|
omndadd |
|
41 |
19 28 30 32 38 40
|
syl131anc |
|
42 |
16
|
adantr |
|
43 |
20 39
|
ressplusg |
|
44 |
42 43
|
syl |
|
45 |
44
|
oveqd |
|
46 |
42 34
|
syl |
|
47 |
44
|
oveqd |
|
48 |
45 46 47
|
breq123d |
|
49 |
48
|
adantr |
|
50 |
41 49
|
mpbid |
|
51 |
50
|
ex |
|
52 |
51
|
ralrimivvva |
|
53 |
|
eqid |
|
54 |
|
eqid |
|
55 |
10 53 54
|
isomnd |
|
56 |
1 18 52 55
|
syl3anbrc |
|