Description: A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | submomnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | omndtos | |
|
3 | 2 | adantr | |
4 | reldmress | |
|
5 | 4 | ovprc2 | |
6 | 5 | fveq2d | |
7 | 6 | adantl | |
8 | base0 | |
|
9 | 7 8 | eqtr4di | |
10 | eqid | |
|
11 | eqid | |
|
12 | 10 11 | mndidcl | |
13 | 12 | ne0d | |
14 | 13 | ad2antlr | |
15 | 14 | neneqd | |
16 | 9 15 | condan | |
17 | resstos | |
|
18 | 3 16 17 | syl2anc | |
19 | simplll | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | 20 21 | ressbas | |
23 | inss2 | |
|
24 | 22 23 | eqsstrrdi | |
25 | 16 24 | syl | |
26 | 25 | ad2antrr | |
27 | simplr1 | |
|
28 | 26 27 | sseldd | |
29 | simplr2 | |
|
30 | 26 29 | sseldd | |
31 | simplr3 | |
|
32 | 26 31 | sseldd | |
33 | eqid | |
|
34 | 20 33 | ressle | |
35 | 16 34 | syl | |
36 | 35 | adantr | |
37 | 36 | breqd | |
38 | 37 | biimpar | |
39 | eqid | |
|
40 | 21 33 39 | omndadd | |
41 | 19 28 30 32 38 40 | syl131anc | |
42 | 16 | adantr | |
43 | 20 39 | ressplusg | |
44 | 42 43 | syl | |
45 | 44 | oveqd | |
46 | 42 34 | syl | |
47 | 44 | oveqd | |
48 | 45 46 47 | breq123d | |
49 | 48 | adantr | |
50 | 41 49 | mpbid | |
51 | 50 | ex | |
52 | 51 | ralrimivvva | |
53 | eqid | |
|
54 | eqid | |
|
55 | 10 53 54 | isomnd | |
56 | 1 18 52 55 | syl3anbrc | |