Metamath Proof Explorer


Theorem sumdmdlem

Description: Lemma for sumdmdi . The span of vector C not in the subspace sum is "trimmed off." (Contributed by NM, 18-Dec-2004) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 AC
sumdmdi.2 BC
Assertion sumdmdlem C¬CA+BB+spanCA=BA

Proof

Step Hyp Ref Expression
1 sumdmdi.1 AC
2 sumdmdi.2 BC
3 elin yB+spanCAyB+spanCyA
4 2 chshii BS
5 spansnsh CspanCS
6 shsel BSspanCSyB+spanCzBwspanCy=z+w
7 4 5 6 sylancr CyB+spanCzBwspanCy=z+w
8 1 cheli yAy
9 2 cheli zBz
10 elspansncl CwspanCw
11 hvsubadd yzwy-z=wz+w=y
12 eqcom z+w=yy=z+w
13 11 12 bitrdi yzwy-z=wy=z+w
14 8 9 10 13 syl3an yAzBCwspanCy-z=wy=z+w
15 14 3expa yAzBCwspanCy-z=wy=z+w
16 1 chshii AS
17 16 4 shsvsi yAzBy-zA+B
18 eleq1 y-z=wy-zA+BwA+B
19 17 18 syl5ibcom yAzBy-z=wwA+B
20 19 adantr yAzBCwspanCy-z=wwA+B
21 15 20 sylbird yAzBCwspanCy=z+wwA+B
22 21 exp32 yAzBCwspanCy=z+wwA+B
23 22 com4r y=z+wyAzBCwspanCwA+B
24 23 imp31 y=z+wyAzBCwspanCwA+B
25 24 adantrr y=z+wyAzBC¬CA+BwspanCwA+B
26 16 4 shscli A+BS
27 elspansn5 A+BSC¬CA+BwspanCwA+Bw=0
28 26 27 ax-mp C¬CA+BwspanCwA+Bw=0
29 28 exp32 C¬CA+BwspanCwA+Bw=0
30 29 adantl y=z+wyAzBC¬CA+BwspanCwA+Bw=0
31 25 30 mpdd y=z+wyAzBC¬CA+BwspanCw=0
32 oveq2 w=0z+w=z+0
33 ax-hvaddid zz+0=z
34 32 33 sylan9eqr zw=0z+w=z
35 9 34 sylan zBw=0z+w=z
36 35 eqeq2d zBw=0y=z+wy=z
37 36 adantll yAzBw=0y=z+wy=z
38 37 biimpac y=z+wyAzBw=0y=z
39 eleq1 y=zyBzB
40 39 biimparc zBy=zyB
41 elin yBAyByA
42 41 biimpri yByAyBA
43 42 ancoms yAyByBA
44 40 43 sylan2 yAzBy=zyBA
45 44 expr yAzBy=zyBA
46 45 ad2antrl y=z+wyAzBw=0y=zyBA
47 38 46 mpd y=z+wyAzBw=0yBA
48 47 expr y=z+wyAzBw=0yBA
49 48 a1d y=z+wyAzBwspanCw=0yBA
50 49 adantr y=z+wyAzBC¬CA+BwspanCw=0yBA
51 31 50 mpdd y=z+wyAzBC¬CA+BwspanCyBA
52 51 ex y=z+wyAzBC¬CA+BwspanCyBA
53 52 com23 y=z+wyAzBwspanCC¬CA+ByBA
54 53 exp32 y=z+wyAzBwspanCC¬CA+ByBA
55 54 com4l yAzBwspanCy=z+wC¬CA+ByBA
56 55 imp4c yAzBwspanCy=z+wC¬CA+ByBA
57 56 exp4a yAzBwspanCy=z+wC¬CA+ByBA
58 57 com23 yACzBwspanCy=z+w¬CA+ByBA
59 58 com4l CzBwspanCy=z+w¬CA+ByAyBA
60 59 expd CzBwspanCy=z+w¬CA+ByAyBA
61 60 rexlimdvv CzBwspanCy=z+w¬CA+ByAyBA
62 7 61 sylbid CyB+spanC¬CA+ByAyBA
63 62 com23 C¬CA+ByB+spanCyAyBA
64 63 imp4b C¬CA+ByB+spanCyAyBA
65 3 64 biimtrid C¬CA+ByB+spanCAyBA
66 65 ssrdv C¬CA+BB+spanCABA
67 shsub1 BSspanCSBB+spanC
68 4 5 67 sylancr CBB+spanC
69 68 ssrind CBAB+spanCA
70 69 adantr C¬CA+BBAB+spanCA
71 66 70 eqssd C¬CA+BB+spanCA=BA