Description: Lemma for sumdmdi . The span of vector C not in the subspace sum is "trimmed off." (Contributed by NM, 18-Dec-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sumdmdi.1 | |
|
sumdmdi.2 | |
||
Assertion | sumdmdlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumdmdi.1 | |
|
2 | sumdmdi.2 | |
|
3 | elin | |
|
4 | 2 | chshii | |
5 | spansnsh | |
|
6 | shsel | |
|
7 | 4 5 6 | sylancr | |
8 | 1 | cheli | |
9 | 2 | cheli | |
10 | elspansncl | |
|
11 | hvsubadd | |
|
12 | eqcom | |
|
13 | 11 12 | bitrdi | |
14 | 8 9 10 13 | syl3an | |
15 | 14 | 3expa | |
16 | 1 | chshii | |
17 | 16 4 | shsvsi | |
18 | eleq1 | |
|
19 | 17 18 | syl5ibcom | |
20 | 19 | adantr | |
21 | 15 20 | sylbird | |
22 | 21 | exp32 | |
23 | 22 | com4r | |
24 | 23 | imp31 | |
25 | 24 | adantrr | |
26 | 16 4 | shscli | |
27 | elspansn5 | |
|
28 | 26 27 | ax-mp | |
29 | 28 | exp32 | |
30 | 29 | adantl | |
31 | 25 30 | mpdd | |
32 | oveq2 | |
|
33 | ax-hvaddid | |
|
34 | 32 33 | sylan9eqr | |
35 | 9 34 | sylan | |
36 | 35 | eqeq2d | |
37 | 36 | adantll | |
38 | 37 | biimpac | |
39 | eleq1 | |
|
40 | 39 | biimparc | |
41 | elin | |
|
42 | 41 | biimpri | |
43 | 42 | ancoms | |
44 | 40 43 | sylan2 | |
45 | 44 | expr | |
46 | 45 | ad2antrl | |
47 | 38 46 | mpd | |
48 | 47 | expr | |
49 | 48 | a1d | |
50 | 49 | adantr | |
51 | 31 50 | mpdd | |
52 | 51 | ex | |
53 | 52 | com23 | |
54 | 53 | exp32 | |
55 | 54 | com4l | |
56 | 55 | imp4c | |
57 | 56 | exp4a | |
58 | 57 | com23 | |
59 | 58 | com4l | |
60 | 59 | expd | |
61 | 60 | rexlimdvv | |
62 | 7 61 | sylbid | |
63 | 62 | com23 | |
64 | 63 | imp4b | |
65 | 3 64 | biimtrid | |
66 | 65 | ssrdv | |
67 | shsub1 | |
|
68 | 4 5 67 | sylancr | |
69 | 68 | ssrind | |
70 | 69 | adantr | |
71 | 66 70 | eqssd | |