Step |
Hyp |
Ref |
Expression |
1 |
|
sumdmdi.1 |
|
2 |
|
sumdmdi.2 |
|
3 |
|
elin |
|
4 |
2
|
chshii |
|
5 |
|
spansnsh |
|
6 |
|
shsel |
|
7 |
4 5 6
|
sylancr |
|
8 |
1
|
cheli |
|
9 |
2
|
cheli |
|
10 |
|
elspansncl |
|
11 |
|
hvsubadd |
|
12 |
|
eqcom |
|
13 |
11 12
|
bitrdi |
|
14 |
8 9 10 13
|
syl3an |
|
15 |
14
|
3expa |
|
16 |
1
|
chshii |
|
17 |
16 4
|
shsvsi |
|
18 |
|
eleq1 |
|
19 |
17 18
|
syl5ibcom |
|
20 |
19
|
adantr |
|
21 |
15 20
|
sylbird |
|
22 |
21
|
exp32 |
|
23 |
22
|
com4r |
|
24 |
23
|
imp31 |
|
25 |
24
|
adantrr |
|
26 |
16 4
|
shscli |
|
27 |
|
elspansn5 |
|
28 |
26 27
|
ax-mp |
|
29 |
28
|
exp32 |
|
30 |
29
|
adantl |
|
31 |
25 30
|
mpdd |
|
32 |
|
oveq2 |
|
33 |
|
ax-hvaddid |
|
34 |
32 33
|
sylan9eqr |
|
35 |
9 34
|
sylan |
|
36 |
35
|
eqeq2d |
|
37 |
36
|
adantll |
|
38 |
37
|
biimpac |
|
39 |
|
eleq1 |
|
40 |
39
|
biimparc |
|
41 |
|
elin |
|
42 |
41
|
biimpri |
|
43 |
42
|
ancoms |
|
44 |
40 43
|
sylan2 |
|
45 |
44
|
expr |
|
46 |
45
|
ad2antrl |
|
47 |
38 46
|
mpd |
|
48 |
47
|
expr |
|
49 |
48
|
a1d |
|
50 |
49
|
adantr |
|
51 |
31 50
|
mpdd |
|
52 |
51
|
ex |
|
53 |
52
|
com23 |
|
54 |
53
|
exp32 |
|
55 |
54
|
com4l |
|
56 |
55
|
imp4c |
|
57 |
56
|
exp4a |
|
58 |
57
|
com23 |
|
59 |
58
|
com4l |
|
60 |
59
|
expd |
|
61 |
60
|
rexlimdvv |
|
62 |
7 61
|
sylbid |
|
63 |
62
|
com23 |
|
64 |
63
|
imp4b |
|
65 |
3 64
|
syl5bi |
|
66 |
65
|
ssrdv |
|
67 |
|
shsub1 |
|
68 |
4 5 67
|
sylancr |
|
69 |
68
|
ssrind |
|
70 |
69
|
adantr |
|
71 |
66 70
|
eqssd |
|