| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumdmdi.1 |
|
| 2 |
|
sumdmdi.2 |
|
| 3 |
|
elin |
|
| 4 |
2
|
chshii |
|
| 5 |
|
spansnsh |
|
| 6 |
|
shsel |
|
| 7 |
4 5 6
|
sylancr |
|
| 8 |
1
|
cheli |
|
| 9 |
2
|
cheli |
|
| 10 |
|
elspansncl |
|
| 11 |
|
hvsubadd |
|
| 12 |
|
eqcom |
|
| 13 |
11 12
|
bitrdi |
|
| 14 |
8 9 10 13
|
syl3an |
|
| 15 |
14
|
3expa |
|
| 16 |
1
|
chshii |
|
| 17 |
16 4
|
shsvsi |
|
| 18 |
|
eleq1 |
|
| 19 |
17 18
|
syl5ibcom |
|
| 20 |
19
|
adantr |
|
| 21 |
15 20
|
sylbird |
|
| 22 |
21
|
exp32 |
|
| 23 |
22
|
com4r |
|
| 24 |
23
|
imp31 |
|
| 25 |
24
|
adantrr |
|
| 26 |
16 4
|
shscli |
|
| 27 |
|
elspansn5 |
|
| 28 |
26 27
|
ax-mp |
|
| 29 |
28
|
exp32 |
|
| 30 |
29
|
adantl |
|
| 31 |
25 30
|
mpdd |
|
| 32 |
|
oveq2 |
|
| 33 |
|
ax-hvaddid |
|
| 34 |
32 33
|
sylan9eqr |
|
| 35 |
9 34
|
sylan |
|
| 36 |
35
|
eqeq2d |
|
| 37 |
36
|
adantll |
|
| 38 |
37
|
biimpac |
|
| 39 |
|
eleq1 |
|
| 40 |
39
|
biimparc |
|
| 41 |
|
elin |
|
| 42 |
41
|
biimpri |
|
| 43 |
42
|
ancoms |
|
| 44 |
40 43
|
sylan2 |
|
| 45 |
44
|
expr |
|
| 46 |
45
|
ad2antrl |
|
| 47 |
38 46
|
mpd |
|
| 48 |
47
|
expr |
|
| 49 |
48
|
a1d |
|
| 50 |
49
|
adantr |
|
| 51 |
31 50
|
mpdd |
|
| 52 |
51
|
ex |
|
| 53 |
52
|
com23 |
|
| 54 |
53
|
exp32 |
|
| 55 |
54
|
com4l |
|
| 56 |
55
|
imp4c |
|
| 57 |
56
|
exp4a |
|
| 58 |
57
|
com23 |
|
| 59 |
58
|
com4l |
|
| 60 |
59
|
expd |
|
| 61 |
60
|
rexlimdvv |
|
| 62 |
7 61
|
sylbid |
|
| 63 |
62
|
com23 |
|
| 64 |
63
|
imp4b |
|
| 65 |
3 64
|
biimtrid |
|
| 66 |
65
|
ssrdv |
|
| 67 |
|
shsub1 |
|
| 68 |
4 5 67
|
sylancr |
|
| 69 |
68
|
ssrind |
|
| 70 |
69
|
adantr |
|
| 71 |
66 70
|
eqssd |
|