Metamath Proof Explorer


Theorem swrd2lsw

Description: Extract the last two symbols from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018)

Ref Expression
Assertion swrd2lsw WWordV1<WWsubstrW2W=⟨“WW2lastSW”⟩

Proof

Step Hyp Ref Expression
1 simpl WWordV1<WWWordV
2 lencl WWordVW0
3 1z 1
4 nn0z W0W
5 zltp1le 1W1<W1+1W
6 3 4 5 sylancr W01<W1+1W
7 1p1e2 1+1=2
8 7 a1i W01+1=2
9 8 breq1d W01+1W2W
10 9 biimpd W01+1W2W
11 6 10 sylbid W01<W2W
12 11 imp W01<W2W
13 2nn0 20
14 13 jctl W020W0
15 14 adantr W01<W20W0
16 nn0sub 20W02WW20
17 15 16 syl W01<W2WW20
18 12 17 mpbid W01<WW20
19 2 18 sylan WWordV1<WW20
20 0red W0
21 1red W1
22 zre WW
23 20 21 22 3jca W01W
24 0lt1 0<1
25 lttr 01W0<11<W0<W
26 25 expd 01W0<11<W0<W
27 23 24 26 mpisyl W1<W0<W
28 elnnz WW0<W
29 28 simplbi2 W0<WW
30 27 29 syld W1<WW
31 4 30 syl W01<WW
32 31 imp W01<WW
33 fzo0end WW10..^W
34 32 33 syl W01<WW10..^W
35 nn0cn W0W
36 2cn 2
37 36 a1i W02
38 1cnd W01
39 35 37 38 3jca W0W21
40 1e2m1 1=21
41 40 a1i W211=21
42 41 oveq2d W21W1=W21
43 subsub W21W21=W-2+1
44 42 43 eqtrd W21W1=W-2+1
45 39 44 syl W0W1=W-2+1
46 45 eqcomd W0W-2+1=W1
47 46 eleq1d W0W-2+10..^WW10..^W
48 47 adantr W01<WW-2+10..^WW10..^W
49 34 48 mpbird W01<WW-2+10..^W
50 2 49 sylan WWordV1<WW-2+10..^W
51 1 19 50 3jca WWordV1<WWWordVW20W-2+10..^W
52 swrds2 WWordVW20W-2+10..^WWsubstrW2W-2+2=⟨“WW2WW-2+1”⟩
53 51 52 syl WWordV1<WWsubstrW2W-2+2=⟨“WW2WW-2+1”⟩
54 35 36 jctir W0W2
55 npcan W2W-2+2=W
56 55 eqcomd W2W=W-2+2
57 2 54 56 3syl WWordVW=W-2+2
58 57 adantr WWordV1<WW=W-2+2
59 58 opeq2d WWordV1<WW2W=W2W-2+2
60 59 oveq2d WWordV1<WWsubstrW2W=WsubstrW2W-2+2
61 eqidd WWordV1<WWW2=WW2
62 lsw WWordVlastSW=WW1
63 39 43 syl W0W21=W-2+1
64 63 eqcomd W0W-2+1=W21
65 2m1e1 21=1
66 65 a1i W021=1
67 66 oveq2d W0W21=W1
68 64 67 eqtrd W0W-2+1=W1
69 2 68 syl WWordVW-2+1=W1
70 69 eqcomd WWordVW1=W-2+1
71 70 fveq2d WWordVWW1=WW-2+1
72 62 71 eqtrd WWordVlastSW=WW-2+1
73 72 adantr WWordV1<WlastSW=WW-2+1
74 61 73 s2eqd WWordV1<W⟨“WW2lastSW”⟩=⟨“WW2WW-2+1”⟩
75 53 60 74 3eqtr4d WWordV1<WWsubstrW2W=⟨“WW2lastSW”⟩