Metamath Proof Explorer


Theorem sylow1lem5

Description: Lemma for sylow1 . Using Lagrange's theorem and the orbit-stabilizer theorem, show that there is a subgroup with size exactly P ^ N . (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypotheses sylow1.x X=BaseG
sylow1.g φGGrp
sylow1.f φXFin
sylow1.p φP
sylow1.n φN0
sylow1.d φPNX
sylow1lem.a +˙=+G
sylow1lem.s S=s𝒫X|s=PN
sylow1lem.m ˙=xX,ySranzyx+˙z
sylow1lem3.1 ˙=xy|xySgXg˙x=y
sylow1lem4.b φBS
sylow1lem4.h H=uX|u˙B=B
sylow1lem5.l φPpCntB˙PpCntXN
Assertion sylow1lem5 φhSubGrpGh=PN

Proof

Step Hyp Ref Expression
1 sylow1.x X=BaseG
2 sylow1.g φGGrp
3 sylow1.f φXFin
4 sylow1.p φP
5 sylow1.n φN0
6 sylow1.d φPNX
7 sylow1lem.a +˙=+G
8 sylow1lem.s S=s𝒫X|s=PN
9 sylow1lem.m ˙=xX,ySranzyx+˙z
10 sylow1lem3.1 ˙=xy|xySgXg˙x=y
11 sylow1lem4.b φBS
12 sylow1lem4.h H=uX|u˙B=B
13 sylow1lem5.l φPpCntB˙PpCntXN
14 1 2 3 4 5 6 7 8 9 sylow1lem2 φ˙GGrpActS
15 1 12 gastacl ˙GGrpActSBSHSubGrpG
16 14 11 15 syl2anc φHSubGrpG
17 1 2 3 4 5 6 7 8 9 10 11 12 sylow1lem4 φHPN
18 10 1 gaorber ˙GGrpActS˙ErS
19 14 18 syl φ˙ErS
20 erdm ˙ErSdom˙=S
21 19 20 syl φdom˙=S
22 11 21 eleqtrrd φBdom˙
23 ecdmn0 Bdom˙B˙
24 22 23 sylib φB˙
25 pwfi XFin𝒫XFin
26 3 25 sylib φ𝒫XFin
27 8 ssrab3 S𝒫X
28 ssfi 𝒫XFinS𝒫XSFin
29 26 27 28 sylancl φSFin
30 19 ecss φB˙S
31 29 30 ssfid φB˙Fin
32 hashnncl B˙FinB˙B˙
33 31 32 syl φB˙B˙
34 24 33 mpbird φB˙
35 4 34 pccld φPpCntB˙0
36 35 nn0red φPpCntB˙
37 5 nn0red φN
38 1 grpbn0 GGrpX
39 2 38 syl φX
40 hashnncl XFinXX
41 3 40 syl φXX
42 39 41 mpbird φX
43 4 42 pccld φPpCntX0
44 43 nn0red φPpCntX
45 leaddsub PpCntB˙NPpCntXPpCntB˙+NPpCntXPpCntB˙PpCntXN
46 36 37 44 45 syl3anc φPpCntB˙+NPpCntXPpCntB˙PpCntXN
47 13 46 mpbird φPpCntB˙+NPpCntX
48 eqid G~QGH=G~QGH
49 1 12 48 10 orbsta2 ˙GGrpActSBSXFinX=B˙H
50 14 11 3 49 syl21anc φX=B˙H
51 50 oveq2d φPpCntX=PpCntB˙H
52 34 nnzd φB˙
53 34 nnne0d φB˙0
54 eqid 0G=0G
55 54 subg0cl HSubGrpG0GH
56 16 55 syl φ0GH
57 56 ne0d φH
58 12 ssrab3 HX
59 ssfi XFinHXHFin
60 3 58 59 sylancl φHFin
61 hashnncl HFinHH
62 60 61 syl φHH
63 57 62 mpbird φH
64 63 nnzd φH
65 63 nnne0d φH0
66 pcmul PB˙B˙0HH0PpCntB˙H=PpCntB˙+PpCntH
67 4 52 53 64 65 66 syl122anc φPpCntB˙H=PpCntB˙+PpCntH
68 51 67 eqtrd φPpCntX=PpCntB˙+PpCntH
69 47 68 breqtrd φPpCntB˙+NPpCntB˙+PpCntH
70 4 63 pccld φPpCntH0
71 70 nn0red φPpCntH
72 37 71 36 leadd2d φNPpCntHPpCntB˙+NPpCntB˙+PpCntH
73 69 72 mpbird φNPpCntH
74 pcdvdsb PHN0NPpCntHPNH
75 4 64 5 74 syl3anc φNPpCntHPNH
76 73 75 mpbid φPNH
77 prmnn PP
78 4 77 syl φP
79 78 5 nnexpcld φPN
80 79 nnzd φPN
81 dvdsle PNHPNHPNH
82 80 63 81 syl2anc φPNHPNH
83 76 82 mpd φPNH
84 hashcl HFinH0
85 60 84 syl φH0
86 85 nn0red φH
87 79 nnred φPN
88 86 87 letri3d φH=PNHPNPNH
89 17 83 88 mpbir2and φH=PN
90 fveqeq2 h=Hh=PNH=PN
91 90 rspcev HSubGrpGH=PNhSubGrpGh=PN
92 16 89 91 syl2anc φhSubGrpGh=PN