Metamath Proof Explorer


Theorem sylow1lem2

Description: Lemma for sylow1 . The function .(+) is a group action on S . (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses sylow1.x X=BaseG
sylow1.g φGGrp
sylow1.f φXFin
sylow1.p φP
sylow1.n φN0
sylow1.d φPNX
sylow1lem.a +˙=+G
sylow1lem.s S=s𝒫X|s=PN
sylow1lem.m ˙=xX,ySranzyx+˙z
Assertion sylow1lem2 φ˙GGrpActS

Proof

Step Hyp Ref Expression
1 sylow1.x X=BaseG
2 sylow1.g φGGrp
3 sylow1.f φXFin
4 sylow1.p φP
5 sylow1.n φN0
6 sylow1.d φPNX
7 sylow1lem.a +˙=+G
8 sylow1lem.s S=s𝒫X|s=PN
9 sylow1lem.m ˙=xX,ySranzyx+˙z
10 1 fvexi XV
11 10 pwex 𝒫XV
12 8 11 rabex2 SV
13 2 12 jctir φGGrpSV
14 simprl φxXySxX
15 eqid zXx+˙z=zXx+˙z
16 1 7 15 grplmulf1o GGrpxXzXx+˙z:X1-1 ontoX
17 2 14 16 syl2an2r φxXySzXx+˙z:X1-1 ontoX
18 f1of1 zXx+˙z:X1-1 ontoXzXx+˙z:X1-1X
19 17 18 syl φxXySzXx+˙z:X1-1X
20 simprr φxXySyS
21 fveqeq2 s=ys=PNy=PN
22 21 8 elrab2 ySy𝒫Xy=PN
23 20 22 sylib φxXySy𝒫Xy=PN
24 23 simpld φxXySy𝒫X
25 24 elpwid φxXySyX
26 f1ssres zXx+˙z:X1-1XyXzXx+˙zy:y1-1X
27 19 25 26 syl2anc φxXySzXx+˙zy:y1-1X
28 resmpt yXzXx+˙zy=zyx+˙z
29 f1eq1 zXx+˙zy=zyx+˙zzXx+˙zy:y1-1Xzyx+˙z:y1-1X
30 25 28 29 3syl φxXySzXx+˙zy:y1-1Xzyx+˙z:y1-1X
31 27 30 mpbid φxXySzyx+˙z:y1-1X
32 f1f zyx+˙z:y1-1Xzyx+˙z:yX
33 frn zyx+˙z:yXranzyx+˙zX
34 31 32 33 3syl φxXySranzyx+˙zX
35 10 elpw2 ranzyx+˙z𝒫Xranzyx+˙zX
36 34 35 sylibr φxXySranzyx+˙z𝒫X
37 f1f1orn zyx+˙z:y1-1Xzyx+˙z:y1-1 ontoranzyx+˙z
38 vex yV
39 38 f1oen zyx+˙z:y1-1 ontoranzyx+˙zyranzyx+˙z
40 31 37 39 3syl φxXySyranzyx+˙z
41 ssfi XFinyXyFin
42 3 25 41 syl2an2r φxXySyFin
43 ssfi XFinranzyx+˙zXranzyx+˙zFin
44 3 34 43 syl2an2r φxXySranzyx+˙zFin
45 hashen yFinranzyx+˙zFiny=ranzyx+˙zyranzyx+˙z
46 42 44 45 syl2anc φxXySy=ranzyx+˙zyranzyx+˙z
47 40 46 mpbird φxXySy=ranzyx+˙z
48 23 simprd φxXySy=PN
49 47 48 eqtr3d φxXySranzyx+˙z=PN
50 fveqeq2 s=ranzyx+˙zs=PNranzyx+˙z=PN
51 50 8 elrab2 ranzyx+˙zSranzyx+˙z𝒫Xranzyx+˙z=PN
52 36 49 51 sylanbrc φxXySranzyx+˙zS
53 52 ralrimivva φxXySranzyx+˙zS
54 9 fmpo xXySranzyx+˙zS˙:X×SS
55 53 54 sylib φ˙:X×SS
56 2 adantr φaSGGrp
57 eqid 0G=0G
58 1 57 grpidcl GGrp0GX
59 56 58 syl φaS0GX
60 simpr φaSaS
61 simpr x=0Gy=ay=a
62 simpl x=0Gy=ax=0G
63 62 oveq1d x=0Gy=ax+˙z=0G+˙z
64 61 63 mpteq12dv x=0Gy=azyx+˙z=za0G+˙z
65 64 rneqd x=0Gy=aranzyx+˙z=ranza0G+˙z
66 vex aV
67 66 mptex za0G+˙zV
68 67 rnex ranza0G+˙zV
69 65 9 68 ovmpoa 0GXaS0G˙a=ranza0G+˙z
70 59 60 69 syl2anc φaS0G˙a=ranza0G+˙z
71 8 ssrab3 S𝒫X
72 71 60 sselid φaSa𝒫X
73 72 elpwid φaSaX
74 73 sselda φaSzazX
75 1 7 57 grplid GGrpzX0G+˙z=z
76 56 74 75 syl2an2r φaSza0G+˙z=z
77 76 mpteq2dva φaSza0G+˙z=zaz
78 mptresid Ia=zaz
79 77 78 eqtr4di φaSza0G+˙z=Ia
80 79 rneqd φaSranza0G+˙z=ranIa
81 rnresi ranIa=a
82 80 81 eqtrdi φaSranza0G+˙z=a
83 70 82 eqtrd φaS0G˙a=a
84 ovex c+˙zV
85 oveq2 w=c+˙zb+˙w=b+˙c+˙z
86 84 85 abrexco u|wv|zav=c+˙zu=b+˙w=u|zau=b+˙c+˙z
87 simprr φaSbXcXcX
88 60 adantr φaSbXcXaS
89 simpr x=cy=ay=a
90 simpl x=cy=ax=c
91 90 oveq1d x=cy=ax+˙z=c+˙z
92 89 91 mpteq12dv x=cy=azyx+˙z=zac+˙z
93 92 rneqd x=cy=aranzyx+˙z=ranzac+˙z
94 66 mptex zac+˙zV
95 94 rnex ranzac+˙zV
96 93 9 95 ovmpoa cXaSc˙a=ranzac+˙z
97 87 88 96 syl2anc φaSbXcXc˙a=ranzac+˙z
98 eqid zac+˙z=zac+˙z
99 98 rnmpt ranzac+˙z=v|zav=c+˙z
100 97 99 eqtrdi φaSbXcXc˙a=v|zav=c+˙z
101 100 rexeqdv φaSbXcXwc˙au=b+˙wwv|zav=c+˙zu=b+˙w
102 101 abbidv φaSbXcXu|wc˙au=b+˙w=u|wv|zav=c+˙zu=b+˙w
103 56 ad2antrr φaSbXcXzaGGrp
104 simprl φaSbXcXbX
105 104 adantr φaSbXcXzabX
106 87 adantr φaSbXcXzacX
107 74 adantlr φaSbXcXzazX
108 1 7 grpass GGrpbXcXzXb+˙c+˙z=b+˙c+˙z
109 103 105 106 107 108 syl13anc φaSbXcXzab+˙c+˙z=b+˙c+˙z
110 109 eqeq2d φaSbXcXzau=b+˙c+˙zu=b+˙c+˙z
111 110 rexbidva φaSbXcXzau=b+˙c+˙zzau=b+˙c+˙z
112 111 abbidv φaSbXcXu|zau=b+˙c+˙z=u|zau=b+˙c+˙z
113 86 102 112 3eqtr4a φaSbXcXu|wc˙au=b+˙w=u|zau=b+˙c+˙z
114 eqid wc˙ab+˙w=wc˙ab+˙w
115 114 rnmpt ranwc˙ab+˙w=u|wc˙au=b+˙w
116 eqid zab+˙c+˙z=zab+˙c+˙z
117 116 rnmpt ranzab+˙c+˙z=u|zau=b+˙c+˙z
118 113 115 117 3eqtr4g φaSbXcXranwc˙ab+˙w=ranzab+˙c+˙z
119 55 ad2antrr φaSbXcX˙:X×SS
120 119 87 88 fovcdmd φaSbXcXc˙aS
121 simpr x=by=c˙ay=c˙a
122 simpl x=by=c˙ax=b
123 122 oveq1d x=by=c˙ax+˙z=b+˙z
124 121 123 mpteq12dv x=by=c˙azyx+˙z=zc˙ab+˙z
125 oveq2 z=wb+˙z=b+˙w
126 125 cbvmptv zc˙ab+˙z=wc˙ab+˙w
127 124 126 eqtrdi x=by=c˙azyx+˙z=wc˙ab+˙w
128 127 rneqd x=by=c˙aranzyx+˙z=ranwc˙ab+˙w
129 ovex c˙aV
130 129 mptex wc˙ab+˙wV
131 130 rnex ranwc˙ab+˙wV
132 128 9 131 ovmpoa bXc˙aSb˙c˙a=ranwc˙ab+˙w
133 104 120 132 syl2anc φaSbXcXb˙c˙a=ranwc˙ab+˙w
134 2 ad2antrr φaSbXcXGGrp
135 1 7 grpcl GGrpbXcXb+˙cX
136 134 104 87 135 syl3anc φaSbXcXb+˙cX
137 simpr x=b+˙cy=ay=a
138 simpl x=b+˙cy=ax=b+˙c
139 138 oveq1d x=b+˙cy=ax+˙z=b+˙c+˙z
140 137 139 mpteq12dv x=b+˙cy=azyx+˙z=zab+˙c+˙z
141 140 rneqd x=b+˙cy=aranzyx+˙z=ranzab+˙c+˙z
142 66 mptex zab+˙c+˙zV
143 142 rnex ranzab+˙c+˙zV
144 141 9 143 ovmpoa b+˙cXaSb+˙c˙a=ranzab+˙c+˙z
145 136 88 144 syl2anc φaSbXcXb+˙c˙a=ranzab+˙c+˙z
146 118 133 145 3eqtr4rd φaSbXcXb+˙c˙a=b˙c˙a
147 146 ralrimivva φaSbXcXb+˙c˙a=b˙c˙a
148 83 147 jca φaS0G˙a=abXcXb+˙c˙a=b˙c˙a
149 148 ralrimiva φaS0G˙a=abXcXb+˙c˙a=b˙c˙a
150 55 149 jca φ˙:X×SSaS0G˙a=abXcXb+˙c˙a=b˙c˙a
151 1 7 57 isga ˙GGrpActSGGrpSV˙:X×SSaS0G˙a=abXcXb+˙c˙a=b˙c˙a
152 13 150 151 sylanbrc φ˙GGrpActS