Step |
Hyp |
Ref |
Expression |
1 |
|
sylow1.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
sylow1.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
3 |
|
sylow1.f |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
4 |
|
sylow1.p |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
sylow1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
|
sylow1.d |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) |
7 |
|
sylow1lem.a |
⊢ + = ( +g ‘ 𝐺 ) |
8 |
|
sylow1lem.s |
⊢ 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } |
9 |
|
sylow1lem.m |
⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑆 ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
10 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
11 |
10
|
pwex |
⊢ 𝒫 𝑋 ∈ V |
12 |
8 11
|
rabex2 |
⊢ 𝑆 ∈ V |
13 |
2 12
|
jctir |
⊢ ( 𝜑 → ( 𝐺 ∈ Grp ∧ 𝑆 ∈ V ) ) |
14 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ 𝑋 ) |
15 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) |
16 |
1 7 15
|
grplmulf1o |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
17 |
2 14 16
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
18 |
|
f1of1 |
⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ) |
19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ) |
20 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) |
21 |
|
fveqeq2 |
⊢ ( 𝑠 = 𝑦 → ( ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) ↔ ( ♯ ‘ 𝑦 ) = ( 𝑃 ↑ 𝑁 ) ) ) |
22 |
21 8
|
elrab2 |
⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑃 ↑ 𝑁 ) ) ) |
23 |
20 22
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑦 ∈ 𝒫 𝑋 ∧ ( ♯ ‘ 𝑦 ) = ( 𝑃 ↑ 𝑁 ) ) ) |
24 |
23
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝒫 𝑋 ) |
25 |
24
|
elpwid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ⊆ 𝑋 ) |
26 |
|
f1ssres |
⊢ ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ∧ 𝑦 ⊆ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) ↾ 𝑦 ) : 𝑦 –1-1→ 𝑋 ) |
27 |
19 25 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) ↾ 𝑦 ) : 𝑦 –1-1→ 𝑋 ) |
28 |
|
resmpt |
⊢ ( 𝑦 ⊆ 𝑋 → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) ↾ 𝑦 ) = ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
29 |
|
f1eq1 |
⊢ ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) ↾ 𝑦 ) = ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) ↾ 𝑦 ) : 𝑦 –1-1→ 𝑋 ↔ ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 –1-1→ 𝑋 ) ) |
30 |
25 28 29
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 + 𝑧 ) ) ↾ 𝑦 ) : 𝑦 –1-1→ 𝑋 ↔ ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 –1-1→ 𝑋 ) ) |
31 |
27 30
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 –1-1→ 𝑋 ) |
32 |
|
f1f |
⊢ ( ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 –1-1→ 𝑋 → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 ⟶ 𝑋 ) |
33 |
|
frn |
⊢ ( ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 ⟶ 𝑋 → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ⊆ 𝑋 ) |
34 |
31 32 33
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ⊆ 𝑋 ) |
35 |
10
|
elpw2 |
⊢ ( ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ 𝒫 𝑋 ↔ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ⊆ 𝑋 ) |
36 |
34 35
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ 𝒫 𝑋 ) |
37 |
|
f1f1orn |
⊢ ( ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 –1-1→ 𝑋 → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 –1-1-onto→ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
38 |
|
vex |
⊢ 𝑦 ∈ V |
39 |
38
|
f1oen |
⊢ ( ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) : 𝑦 –1-1-onto→ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) → 𝑦 ≈ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
40 |
31 37 39
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ≈ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
41 |
|
ssfi |
⊢ ( ( 𝑋 ∈ Fin ∧ 𝑦 ⊆ 𝑋 ) → 𝑦 ∈ Fin ) |
42 |
3 25 41
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ Fin ) |
43 |
|
ssfi |
⊢ ( ( 𝑋 ∈ Fin ∧ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ⊆ 𝑋 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ Fin ) |
44 |
3 34 43
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ Fin ) |
45 |
|
hashen |
⊢ ( ( 𝑦 ∈ Fin ∧ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ Fin ) → ( ( ♯ ‘ 𝑦 ) = ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) ↔ 𝑦 ≈ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) ) |
46 |
42 44 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( ♯ ‘ 𝑦 ) = ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) ↔ 𝑦 ≈ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) ) |
47 |
40 46
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( ♯ ‘ 𝑦 ) = ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) ) |
48 |
23
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( ♯ ‘ 𝑦 ) = ( 𝑃 ↑ 𝑁 ) ) |
49 |
47 48
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) = ( 𝑃 ↑ 𝑁 ) ) |
50 |
|
fveqeq2 |
⊢ ( 𝑠 = ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) → ( ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) ↔ ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) = ( 𝑃 ↑ 𝑁 ) ) ) |
51 |
50 8
|
elrab2 |
⊢ ( ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ 𝑆 ↔ ( ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ 𝒫 𝑋 ∧ ( ♯ ‘ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) = ( 𝑃 ↑ 𝑁 ) ) ) |
52 |
36 49 51
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ 𝑆 ) |
53 |
52
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ 𝑆 ) |
54 |
9
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ 𝑆 ↔ ⊕ : ( 𝑋 × 𝑆 ) ⟶ 𝑆 ) |
55 |
53 54
|
sylib |
⊢ ( 𝜑 → ⊕ : ( 𝑋 × 𝑆 ) ⟶ 𝑆 ) |
56 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
57 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
58 |
1 57
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
59 |
56 58
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
60 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ 𝑆 ) |
61 |
|
simpr |
⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → 𝑦 = 𝑎 ) |
62 |
|
simpl |
⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → 𝑥 = ( 0g ‘ 𝐺 ) ) |
63 |
62
|
oveq1d |
⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → ( 𝑥 + 𝑧 ) = ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) |
64 |
61 63
|
mpteq12dv |
⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) ) |
65 |
64
|
rneqd |
⊢ ( ( 𝑥 = ( 0g ‘ 𝐺 ) ∧ 𝑦 = 𝑎 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) ) |
66 |
|
vex |
⊢ 𝑎 ∈ V |
67 |
66
|
mptex |
⊢ ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) ∈ V |
68 |
67
|
rnex |
⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) ∈ V |
69 |
65 9 68
|
ovmpoa |
⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ 𝑎 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) ) |
70 |
59 60 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) ) |
71 |
8
|
ssrab3 |
⊢ 𝑆 ⊆ 𝒫 𝑋 |
72 |
71 60
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ 𝒫 𝑋 ) |
73 |
72
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ⊆ 𝑋 ) |
74 |
73
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑎 ) → 𝑧 ∈ 𝑋 ) |
75 |
1 7 57
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑧 ) = 𝑧 ) |
76 |
56 74 75
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑎 ) → ( ( 0g ‘ 𝐺 ) + 𝑧 ) = 𝑧 ) |
77 |
76
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) = ( 𝑧 ∈ 𝑎 ↦ 𝑧 ) ) |
78 |
|
mptresid |
⊢ ( I ↾ 𝑎 ) = ( 𝑧 ∈ 𝑎 ↦ 𝑧 ) |
79 |
77 78
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) = ( I ↾ 𝑎 ) ) |
80 |
79
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ran ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) = ran ( I ↾ 𝑎 ) ) |
81 |
|
rnresi |
⊢ ran ( I ↾ 𝑎 ) = 𝑎 |
82 |
80 81
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ran ( 𝑧 ∈ 𝑎 ↦ ( ( 0g ‘ 𝐺 ) + 𝑧 ) ) = 𝑎 ) |
83 |
70 82
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ) |
84 |
|
ovex |
⊢ ( 𝑐 + 𝑧 ) ∈ V |
85 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝑐 + 𝑧 ) → ( 𝑏 + 𝑤 ) = ( 𝑏 + ( 𝑐 + 𝑧 ) ) ) |
86 |
84 85
|
abrexco |
⊢ { 𝑢 ∣ ∃ 𝑤 ∈ { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( 𝑐 + 𝑧 ) } 𝑢 = ( 𝑏 + 𝑤 ) } = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( 𝑏 + ( 𝑐 + 𝑧 ) ) } |
87 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑐 ∈ 𝑋 ) |
88 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑎 ∈ 𝑆 ) |
89 |
|
simpr |
⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → 𝑦 = 𝑎 ) |
90 |
|
simpl |
⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → 𝑥 = 𝑐 ) |
91 |
90
|
oveq1d |
⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → ( 𝑥 + 𝑧 ) = ( 𝑐 + 𝑧 ) ) |
92 |
89 91
|
mpteq12dv |
⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) ) |
93 |
92
|
rneqd |
⊢ ( ( 𝑥 = 𝑐 ∧ 𝑦 = 𝑎 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) ) |
94 |
66
|
mptex |
⊢ ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) ∈ V |
95 |
94
|
rnex |
⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) ∈ V |
96 |
93 9 95
|
ovmpoa |
⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑐 ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) ) |
97 |
87 88 96
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) ) |
98 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) = ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) |
99 |
98
|
rnmpt |
⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( 𝑐 + 𝑧 ) ) = { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( 𝑐 + 𝑧 ) } |
100 |
97 99
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ⊕ 𝑎 ) = { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( 𝑐 + 𝑧 ) } ) |
101 |
100
|
rexeqdv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ∃ 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) 𝑢 = ( 𝑏 + 𝑤 ) ↔ ∃ 𝑤 ∈ { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( 𝑐 + 𝑧 ) } 𝑢 = ( 𝑏 + 𝑤 ) ) ) |
102 |
101
|
abbidv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → { 𝑢 ∣ ∃ 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) 𝑢 = ( 𝑏 + 𝑤 ) } = { 𝑢 ∣ ∃ 𝑤 ∈ { 𝑣 ∣ ∃ 𝑧 ∈ 𝑎 𝑣 = ( 𝑐 + 𝑧 ) } 𝑢 = ( 𝑏 + 𝑤 ) } ) |
103 |
56
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝐺 ∈ Grp ) |
104 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑏 ∈ 𝑋 ) |
105 |
104
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝑏 ∈ 𝑋 ) |
106 |
87
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝑐 ∈ 𝑋 ) |
107 |
74
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → 𝑧 ∈ 𝑋 ) |
108 |
1 7
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑏 + 𝑐 ) + 𝑧 ) = ( 𝑏 + ( 𝑐 + 𝑧 ) ) ) |
109 |
103 105 106 107 108
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( ( 𝑏 + 𝑐 ) + 𝑧 ) = ( 𝑏 + ( 𝑐 + 𝑧 ) ) ) |
110 |
109
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ∧ 𝑧 ∈ 𝑎 ) → ( 𝑢 = ( ( 𝑏 + 𝑐 ) + 𝑧 ) ↔ 𝑢 = ( 𝑏 + ( 𝑐 + 𝑧 ) ) ) ) |
111 |
110
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( 𝑏 + 𝑐 ) + 𝑧 ) ↔ ∃ 𝑧 ∈ 𝑎 𝑢 = ( 𝑏 + ( 𝑐 + 𝑧 ) ) ) ) |
112 |
111
|
abbidv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( 𝑏 + 𝑐 ) + 𝑧 ) } = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( 𝑏 + ( 𝑐 + 𝑧 ) ) } ) |
113 |
86 102 112
|
3eqtr4a |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → { 𝑢 ∣ ∃ 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) 𝑢 = ( 𝑏 + 𝑤 ) } = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( 𝑏 + 𝑐 ) + 𝑧 ) } ) |
114 |
|
eqid |
⊢ ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) = ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) |
115 |
114
|
rnmpt |
⊢ ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) = { 𝑢 ∣ ∃ 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) 𝑢 = ( 𝑏 + 𝑤 ) } |
116 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) = ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) |
117 |
116
|
rnmpt |
⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑎 𝑢 = ( ( 𝑏 + 𝑐 ) + 𝑧 ) } |
118 |
113 115 117
|
3eqtr4g |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) ) |
119 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ⊕ : ( 𝑋 × 𝑆 ) ⟶ 𝑆 ) |
120 |
119 87 88
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ⊕ 𝑎 ) ∈ 𝑆 ) |
121 |
|
simpr |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) |
122 |
|
simpl |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → 𝑥 = 𝑏 ) |
123 |
122
|
oveq1d |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → ( 𝑥 + 𝑧 ) = ( 𝑏 + 𝑧 ) ) |
124 |
121 123
|
mpteq12dv |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑧 ) ) ) |
125 |
|
oveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑏 + 𝑧 ) = ( 𝑏 + 𝑤 ) ) |
126 |
125
|
cbvmptv |
⊢ ( 𝑧 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑧 ) ) = ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) |
127 |
124 126
|
eqtrdi |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) ) |
128 |
127
|
rneqd |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = ( 𝑐 ⊕ 𝑎 ) ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) ) |
129 |
|
ovex |
⊢ ( 𝑐 ⊕ 𝑎 ) ∈ V |
130 |
129
|
mptex |
⊢ ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) ∈ V |
131 |
130
|
rnex |
⊢ ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) ∈ V |
132 |
128 9 131
|
ovmpoa |
⊢ ( ( 𝑏 ∈ 𝑋 ∧ ( 𝑐 ⊕ 𝑎 ) ∈ 𝑆 ) → ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) = ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) ) |
133 |
104 120 132
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) = ran ( 𝑤 ∈ ( 𝑐 ⊕ 𝑎 ) ↦ ( 𝑏 + 𝑤 ) ) ) |
134 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
135 |
1 7
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) → ( 𝑏 + 𝑐 ) ∈ 𝑋 ) |
136 |
134 104 87 135
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑏 + 𝑐 ) ∈ 𝑋 ) |
137 |
|
simpr |
⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → 𝑦 = 𝑎 ) |
138 |
|
simpl |
⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → 𝑥 = ( 𝑏 + 𝑐 ) ) |
139 |
138
|
oveq1d |
⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → ( 𝑥 + 𝑧 ) = ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) |
140 |
137 139
|
mpteq12dv |
⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) ) |
141 |
140
|
rneqd |
⊢ ( ( 𝑥 = ( 𝑏 + 𝑐 ) ∧ 𝑦 = 𝑎 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) ) |
142 |
66
|
mptex |
⊢ ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) ∈ V |
143 |
142
|
rnex |
⊢ ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) ∈ V |
144 |
141 9 143
|
ovmpoa |
⊢ ( ( ( 𝑏 + 𝑐 ) ∈ 𝑋 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) ) |
145 |
136 88 144
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ran ( 𝑧 ∈ 𝑎 ↦ ( ( 𝑏 + 𝑐 ) + 𝑧 ) ) ) |
146 |
118 133 145
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) |
147 |
146
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) |
148 |
83 147
|
jca |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) ) |
149 |
148
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) ) |
150 |
55 149
|
jca |
⊢ ( 𝜑 → ( ⊕ : ( 𝑋 × 𝑆 ) ⟶ 𝑆 ∧ ∀ 𝑎 ∈ 𝑆 ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) ) ) |
151 |
1 7 57
|
isga |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ V ) ∧ ( ⊕ : ( 𝑋 × 𝑆 ) ⟶ 𝑆 ∧ ∀ 𝑎 ∈ 𝑆 ( ( ( 0g ‘ 𝐺 ) ⊕ 𝑎 ) = 𝑎 ∧ ∀ 𝑏 ∈ 𝑋 ∀ 𝑐 ∈ 𝑋 ( ( 𝑏 + 𝑐 ) ⊕ 𝑎 ) = ( 𝑏 ⊕ ( 𝑐 ⊕ 𝑎 ) ) ) ) ) ) |
152 |
13 150 151
|
sylanbrc |
⊢ ( 𝜑 → ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) ) |