Step |
Hyp |
Ref |
Expression |
1 |
|
sylow1.x |
β’ π = ( Base β πΊ ) |
2 |
|
sylow1.g |
β’ ( π β πΊ β Grp ) |
3 |
|
sylow1.f |
β’ ( π β π β Fin ) |
4 |
|
sylow1.p |
β’ ( π β π β β ) |
5 |
|
sylow1.n |
β’ ( π β π β β0 ) |
6 |
|
sylow1.d |
β’ ( π β ( π β π ) β₯ ( β― β π ) ) |
7 |
|
sylow1lem.a |
β’ + = ( +g β πΊ ) |
8 |
|
sylow1lem.s |
β’ π = { π β π« π β£ ( β― β π ) = ( π β π ) } |
9 |
|
sylow1lem.m |
β’ β = ( π₯ β π , π¦ β π β¦ ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) ) |
10 |
1
|
fvexi |
β’ π β V |
11 |
10
|
pwex |
β’ π« π β V |
12 |
8 11
|
rabex2 |
β’ π β V |
13 |
2 12
|
jctir |
β’ ( π β ( πΊ β Grp β§ π β V ) ) |
14 |
|
simprl |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β π₯ β π ) |
15 |
|
eqid |
β’ ( π§ β π β¦ ( π₯ + π§ ) ) = ( π§ β π β¦ ( π₯ + π§ ) ) |
16 |
1 7 15
|
grplmulf1o |
β’ ( ( πΊ β Grp β§ π₯ β π ) β ( π§ β π β¦ ( π₯ + π§ ) ) : π β1-1-ontoβ π ) |
17 |
2 14 16
|
syl2an2r |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β ( π§ β π β¦ ( π₯ + π§ ) ) : π β1-1-ontoβ π ) |
18 |
|
f1of1 |
β’ ( ( π§ β π β¦ ( π₯ + π§ ) ) : π β1-1-ontoβ π β ( π§ β π β¦ ( π₯ + π§ ) ) : π β1-1β π ) |
19 |
17 18
|
syl |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β ( π§ β π β¦ ( π₯ + π§ ) ) : π β1-1β π ) |
20 |
|
simprr |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β π¦ β π ) |
21 |
|
fveqeq2 |
β’ ( π = π¦ β ( ( β― β π ) = ( π β π ) β ( β― β π¦ ) = ( π β π ) ) ) |
22 |
21 8
|
elrab2 |
β’ ( π¦ β π β ( π¦ β π« π β§ ( β― β π¦ ) = ( π β π ) ) ) |
23 |
20 22
|
sylib |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β ( π¦ β π« π β§ ( β― β π¦ ) = ( π β π ) ) ) |
24 |
23
|
simpld |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β π¦ β π« π ) |
25 |
24
|
elpwid |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β π¦ β π ) |
26 |
|
f1ssres |
β’ ( ( ( π§ β π β¦ ( π₯ + π§ ) ) : π β1-1β π β§ π¦ β π ) β ( ( π§ β π β¦ ( π₯ + π§ ) ) βΎ π¦ ) : π¦ β1-1β π ) |
27 |
19 25 26
|
syl2anc |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β ( ( π§ β π β¦ ( π₯ + π§ ) ) βΎ π¦ ) : π¦ β1-1β π ) |
28 |
|
resmpt |
β’ ( π¦ β π β ( ( π§ β π β¦ ( π₯ + π§ ) ) βΎ π¦ ) = ( π§ β π¦ β¦ ( π₯ + π§ ) ) ) |
29 |
|
f1eq1 |
β’ ( ( ( π§ β π β¦ ( π₯ + π§ ) ) βΎ π¦ ) = ( π§ β π¦ β¦ ( π₯ + π§ ) ) β ( ( ( π§ β π β¦ ( π₯ + π§ ) ) βΎ π¦ ) : π¦ β1-1β π β ( π§ β π¦ β¦ ( π₯ + π§ ) ) : π¦ β1-1β π ) ) |
30 |
25 28 29
|
3syl |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β ( ( ( π§ β π β¦ ( π₯ + π§ ) ) βΎ π¦ ) : π¦ β1-1β π β ( π§ β π¦ β¦ ( π₯ + π§ ) ) : π¦ β1-1β π ) ) |
31 |
27 30
|
mpbid |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β ( π§ β π¦ β¦ ( π₯ + π§ ) ) : π¦ β1-1β π ) |
32 |
|
f1f |
β’ ( ( π§ β π¦ β¦ ( π₯ + π§ ) ) : π¦ β1-1β π β ( π§ β π¦ β¦ ( π₯ + π§ ) ) : π¦ βΆ π ) |
33 |
|
frn |
β’ ( ( π§ β π¦ β¦ ( π₯ + π§ ) ) : π¦ βΆ π β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β π ) |
34 |
31 32 33
|
3syl |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β π ) |
35 |
10
|
elpw2 |
β’ ( ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β π« π β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β π ) |
36 |
34 35
|
sylibr |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β π« π ) |
37 |
|
f1f1orn |
β’ ( ( π§ β π¦ β¦ ( π₯ + π§ ) ) : π¦ β1-1β π β ( π§ β π¦ β¦ ( π₯ + π§ ) ) : π¦ β1-1-ontoβ ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) ) |
38 |
|
vex |
β’ π¦ β V |
39 |
38
|
f1oen |
β’ ( ( π§ β π¦ β¦ ( π₯ + π§ ) ) : π¦ β1-1-ontoβ ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β π¦ β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) ) |
40 |
31 37 39
|
3syl |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β π¦ β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) ) |
41 |
|
ssfi |
β’ ( ( π β Fin β§ π¦ β π ) β π¦ β Fin ) |
42 |
3 25 41
|
syl2an2r |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β π¦ β Fin ) |
43 |
|
ssfi |
β’ ( ( π β Fin β§ ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β π ) β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β Fin ) |
44 |
3 34 43
|
syl2an2r |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β Fin ) |
45 |
|
hashen |
β’ ( ( π¦ β Fin β§ ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β Fin ) β ( ( β― β π¦ ) = ( β― β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) ) β π¦ β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) ) ) |
46 |
42 44 45
|
syl2anc |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β ( ( β― β π¦ ) = ( β― β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) ) β π¦ β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) ) ) |
47 |
40 46
|
mpbird |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β ( β― β π¦ ) = ( β― β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) ) ) |
48 |
23
|
simprd |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β ( β― β π¦ ) = ( π β π ) ) |
49 |
47 48
|
eqtr3d |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β ( β― β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) ) = ( π β π ) ) |
50 |
|
fveqeq2 |
β’ ( π = ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β ( ( β― β π ) = ( π β π ) β ( β― β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) ) = ( π β π ) ) ) |
51 |
50 8
|
elrab2 |
β’ ( ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β π β ( ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β π« π β§ ( β― β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) ) = ( π β π ) ) ) |
52 |
36 49 51
|
sylanbrc |
β’ ( ( π β§ ( π₯ β π β§ π¦ β π ) ) β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β π ) |
53 |
52
|
ralrimivva |
β’ ( π β β π₯ β π β π¦ β π ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β π ) |
54 |
9
|
fmpo |
β’ ( β π₯ β π β π¦ β π ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) β π β β : ( π Γ π ) βΆ π ) |
55 |
53 54
|
sylib |
β’ ( π β β : ( π Γ π ) βΆ π ) |
56 |
2
|
adantr |
β’ ( ( π β§ π β π ) β πΊ β Grp ) |
57 |
|
eqid |
β’ ( 0g β πΊ ) = ( 0g β πΊ ) |
58 |
1 57
|
grpidcl |
β’ ( πΊ β Grp β ( 0g β πΊ ) β π ) |
59 |
56 58
|
syl |
β’ ( ( π β§ π β π ) β ( 0g β πΊ ) β π ) |
60 |
|
simpr |
β’ ( ( π β§ π β π ) β π β π ) |
61 |
|
simpr |
β’ ( ( π₯ = ( 0g β πΊ ) β§ π¦ = π ) β π¦ = π ) |
62 |
|
simpl |
β’ ( ( π₯ = ( 0g β πΊ ) β§ π¦ = π ) β π₯ = ( 0g β πΊ ) ) |
63 |
62
|
oveq1d |
β’ ( ( π₯ = ( 0g β πΊ ) β§ π¦ = π ) β ( π₯ + π§ ) = ( ( 0g β πΊ ) + π§ ) ) |
64 |
61 63
|
mpteq12dv |
β’ ( ( π₯ = ( 0g β πΊ ) β§ π¦ = π ) β ( π§ β π¦ β¦ ( π₯ + π§ ) ) = ( π§ β π β¦ ( ( 0g β πΊ ) + π§ ) ) ) |
65 |
64
|
rneqd |
β’ ( ( π₯ = ( 0g β πΊ ) β§ π¦ = π ) β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) = ran ( π§ β π β¦ ( ( 0g β πΊ ) + π§ ) ) ) |
66 |
|
vex |
β’ π β V |
67 |
66
|
mptex |
β’ ( π§ β π β¦ ( ( 0g β πΊ ) + π§ ) ) β V |
68 |
67
|
rnex |
β’ ran ( π§ β π β¦ ( ( 0g β πΊ ) + π§ ) ) β V |
69 |
65 9 68
|
ovmpoa |
β’ ( ( ( 0g β πΊ ) β π β§ π β π ) β ( ( 0g β πΊ ) β π ) = ran ( π§ β π β¦ ( ( 0g β πΊ ) + π§ ) ) ) |
70 |
59 60 69
|
syl2anc |
β’ ( ( π β§ π β π ) β ( ( 0g β πΊ ) β π ) = ran ( π§ β π β¦ ( ( 0g β πΊ ) + π§ ) ) ) |
71 |
8
|
ssrab3 |
β’ π β π« π |
72 |
71 60
|
sselid |
β’ ( ( π β§ π β π ) β π β π« π ) |
73 |
72
|
elpwid |
β’ ( ( π β§ π β π ) β π β π ) |
74 |
73
|
sselda |
β’ ( ( ( π β§ π β π ) β§ π§ β π ) β π§ β π ) |
75 |
1 7 57
|
grplid |
β’ ( ( πΊ β Grp β§ π§ β π ) β ( ( 0g β πΊ ) + π§ ) = π§ ) |
76 |
56 74 75
|
syl2an2r |
β’ ( ( ( π β§ π β π ) β§ π§ β π ) β ( ( 0g β πΊ ) + π§ ) = π§ ) |
77 |
76
|
mpteq2dva |
β’ ( ( π β§ π β π ) β ( π§ β π β¦ ( ( 0g β πΊ ) + π§ ) ) = ( π§ β π β¦ π§ ) ) |
78 |
|
mptresid |
β’ ( I βΎ π ) = ( π§ β π β¦ π§ ) |
79 |
77 78
|
eqtr4di |
β’ ( ( π β§ π β π ) β ( π§ β π β¦ ( ( 0g β πΊ ) + π§ ) ) = ( I βΎ π ) ) |
80 |
79
|
rneqd |
β’ ( ( π β§ π β π ) β ran ( π§ β π β¦ ( ( 0g β πΊ ) + π§ ) ) = ran ( I βΎ π ) ) |
81 |
|
rnresi |
β’ ran ( I βΎ π ) = π |
82 |
80 81
|
eqtrdi |
β’ ( ( π β§ π β π ) β ran ( π§ β π β¦ ( ( 0g β πΊ ) + π§ ) ) = π ) |
83 |
70 82
|
eqtrd |
β’ ( ( π β§ π β π ) β ( ( 0g β πΊ ) β π ) = π ) |
84 |
|
ovex |
β’ ( π + π§ ) β V |
85 |
|
oveq2 |
β’ ( π€ = ( π + π§ ) β ( π + π€ ) = ( π + ( π + π§ ) ) ) |
86 |
84 85
|
abrexco |
β’ { π’ β£ β π€ β { π£ β£ β π§ β π π£ = ( π + π§ ) } π’ = ( π + π€ ) } = { π’ β£ β π§ β π π’ = ( π + ( π + π§ ) ) } |
87 |
|
simprr |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β π β π ) |
88 |
60
|
adantr |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β π β π ) |
89 |
|
simpr |
β’ ( ( π₯ = π β§ π¦ = π ) β π¦ = π ) |
90 |
|
simpl |
β’ ( ( π₯ = π β§ π¦ = π ) β π₯ = π ) |
91 |
90
|
oveq1d |
β’ ( ( π₯ = π β§ π¦ = π ) β ( π₯ + π§ ) = ( π + π§ ) ) |
92 |
89 91
|
mpteq12dv |
β’ ( ( π₯ = π β§ π¦ = π ) β ( π§ β π¦ β¦ ( π₯ + π§ ) ) = ( π§ β π β¦ ( π + π§ ) ) ) |
93 |
92
|
rneqd |
β’ ( ( π₯ = π β§ π¦ = π ) β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) = ran ( π§ β π β¦ ( π + π§ ) ) ) |
94 |
66
|
mptex |
β’ ( π§ β π β¦ ( π + π§ ) ) β V |
95 |
94
|
rnex |
β’ ran ( π§ β π β¦ ( π + π§ ) ) β V |
96 |
93 9 95
|
ovmpoa |
β’ ( ( π β π β§ π β π ) β ( π β π ) = ran ( π§ β π β¦ ( π + π§ ) ) ) |
97 |
87 88 96
|
syl2anc |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β ( π β π ) = ran ( π§ β π β¦ ( π + π§ ) ) ) |
98 |
|
eqid |
β’ ( π§ β π β¦ ( π + π§ ) ) = ( π§ β π β¦ ( π + π§ ) ) |
99 |
98
|
rnmpt |
β’ ran ( π§ β π β¦ ( π + π§ ) ) = { π£ β£ β π§ β π π£ = ( π + π§ ) } |
100 |
97 99
|
eqtrdi |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β ( π β π ) = { π£ β£ β π§ β π π£ = ( π + π§ ) } ) |
101 |
100
|
rexeqdv |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β ( β π€ β ( π β π ) π’ = ( π + π€ ) β β π€ β { π£ β£ β π§ β π π£ = ( π + π§ ) } π’ = ( π + π€ ) ) ) |
102 |
101
|
abbidv |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β { π’ β£ β π€ β ( π β π ) π’ = ( π + π€ ) } = { π’ β£ β π€ β { π£ β£ β π§ β π π£ = ( π + π§ ) } π’ = ( π + π€ ) } ) |
103 |
56
|
ad2antrr |
β’ ( ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β§ π§ β π ) β πΊ β Grp ) |
104 |
|
simprl |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β π β π ) |
105 |
104
|
adantr |
β’ ( ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β§ π§ β π ) β π β π ) |
106 |
87
|
adantr |
β’ ( ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β§ π§ β π ) β π β π ) |
107 |
74
|
adantlr |
β’ ( ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β§ π§ β π ) β π§ β π ) |
108 |
1 7
|
grpass |
β’ ( ( πΊ β Grp β§ ( π β π β§ π β π β§ π§ β π ) ) β ( ( π + π ) + π§ ) = ( π + ( π + π§ ) ) ) |
109 |
103 105 106 107 108
|
syl13anc |
β’ ( ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β§ π§ β π ) β ( ( π + π ) + π§ ) = ( π + ( π + π§ ) ) ) |
110 |
109
|
eqeq2d |
β’ ( ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β§ π§ β π ) β ( π’ = ( ( π + π ) + π§ ) β π’ = ( π + ( π + π§ ) ) ) ) |
111 |
110
|
rexbidva |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β ( β π§ β π π’ = ( ( π + π ) + π§ ) β β π§ β π π’ = ( π + ( π + π§ ) ) ) ) |
112 |
111
|
abbidv |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β { π’ β£ β π§ β π π’ = ( ( π + π ) + π§ ) } = { π’ β£ β π§ β π π’ = ( π + ( π + π§ ) ) } ) |
113 |
86 102 112
|
3eqtr4a |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β { π’ β£ β π€ β ( π β π ) π’ = ( π + π€ ) } = { π’ β£ β π§ β π π’ = ( ( π + π ) + π§ ) } ) |
114 |
|
eqid |
β’ ( π€ β ( π β π ) β¦ ( π + π€ ) ) = ( π€ β ( π β π ) β¦ ( π + π€ ) ) |
115 |
114
|
rnmpt |
β’ ran ( π€ β ( π β π ) β¦ ( π + π€ ) ) = { π’ β£ β π€ β ( π β π ) π’ = ( π + π€ ) } |
116 |
|
eqid |
β’ ( π§ β π β¦ ( ( π + π ) + π§ ) ) = ( π§ β π β¦ ( ( π + π ) + π§ ) ) |
117 |
116
|
rnmpt |
β’ ran ( π§ β π β¦ ( ( π + π ) + π§ ) ) = { π’ β£ β π§ β π π’ = ( ( π + π ) + π§ ) } |
118 |
113 115 117
|
3eqtr4g |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β ran ( π€ β ( π β π ) β¦ ( π + π€ ) ) = ran ( π§ β π β¦ ( ( π + π ) + π§ ) ) ) |
119 |
55
|
ad2antrr |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β β : ( π Γ π ) βΆ π ) |
120 |
119 87 88
|
fovcdmd |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β ( π β π ) β π ) |
121 |
|
simpr |
β’ ( ( π₯ = π β§ π¦ = ( π β π ) ) β π¦ = ( π β π ) ) |
122 |
|
simpl |
β’ ( ( π₯ = π β§ π¦ = ( π β π ) ) β π₯ = π ) |
123 |
122
|
oveq1d |
β’ ( ( π₯ = π β§ π¦ = ( π β π ) ) β ( π₯ + π§ ) = ( π + π§ ) ) |
124 |
121 123
|
mpteq12dv |
β’ ( ( π₯ = π β§ π¦ = ( π β π ) ) β ( π§ β π¦ β¦ ( π₯ + π§ ) ) = ( π§ β ( π β π ) β¦ ( π + π§ ) ) ) |
125 |
|
oveq2 |
β’ ( π§ = π€ β ( π + π§ ) = ( π + π€ ) ) |
126 |
125
|
cbvmptv |
β’ ( π§ β ( π β π ) β¦ ( π + π§ ) ) = ( π€ β ( π β π ) β¦ ( π + π€ ) ) |
127 |
124 126
|
eqtrdi |
β’ ( ( π₯ = π β§ π¦ = ( π β π ) ) β ( π§ β π¦ β¦ ( π₯ + π§ ) ) = ( π€ β ( π β π ) β¦ ( π + π€ ) ) ) |
128 |
127
|
rneqd |
β’ ( ( π₯ = π β§ π¦ = ( π β π ) ) β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) = ran ( π€ β ( π β π ) β¦ ( π + π€ ) ) ) |
129 |
|
ovex |
β’ ( π β π ) β V |
130 |
129
|
mptex |
β’ ( π€ β ( π β π ) β¦ ( π + π€ ) ) β V |
131 |
130
|
rnex |
β’ ran ( π€ β ( π β π ) β¦ ( π + π€ ) ) β V |
132 |
128 9 131
|
ovmpoa |
β’ ( ( π β π β§ ( π β π ) β π ) β ( π β ( π β π ) ) = ran ( π€ β ( π β π ) β¦ ( π + π€ ) ) ) |
133 |
104 120 132
|
syl2anc |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β ( π β ( π β π ) ) = ran ( π€ β ( π β π ) β¦ ( π + π€ ) ) ) |
134 |
2
|
ad2antrr |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β πΊ β Grp ) |
135 |
1 7
|
grpcl |
β’ ( ( πΊ β Grp β§ π β π β§ π β π ) β ( π + π ) β π ) |
136 |
134 104 87 135
|
syl3anc |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β ( π + π ) β π ) |
137 |
|
simpr |
β’ ( ( π₯ = ( π + π ) β§ π¦ = π ) β π¦ = π ) |
138 |
|
simpl |
β’ ( ( π₯ = ( π + π ) β§ π¦ = π ) β π₯ = ( π + π ) ) |
139 |
138
|
oveq1d |
β’ ( ( π₯ = ( π + π ) β§ π¦ = π ) β ( π₯ + π§ ) = ( ( π + π ) + π§ ) ) |
140 |
137 139
|
mpteq12dv |
β’ ( ( π₯ = ( π + π ) β§ π¦ = π ) β ( π§ β π¦ β¦ ( π₯ + π§ ) ) = ( π§ β π β¦ ( ( π + π ) + π§ ) ) ) |
141 |
140
|
rneqd |
β’ ( ( π₯ = ( π + π ) β§ π¦ = π ) β ran ( π§ β π¦ β¦ ( π₯ + π§ ) ) = ran ( π§ β π β¦ ( ( π + π ) + π§ ) ) ) |
142 |
66
|
mptex |
β’ ( π§ β π β¦ ( ( π + π ) + π§ ) ) β V |
143 |
142
|
rnex |
β’ ran ( π§ β π β¦ ( ( π + π ) + π§ ) ) β V |
144 |
141 9 143
|
ovmpoa |
β’ ( ( ( π + π ) β π β§ π β π ) β ( ( π + π ) β π ) = ran ( π§ β π β¦ ( ( π + π ) + π§ ) ) ) |
145 |
136 88 144
|
syl2anc |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β ( ( π + π ) β π ) = ran ( π§ β π β¦ ( ( π + π ) + π§ ) ) ) |
146 |
118 133 145
|
3eqtr4rd |
β’ ( ( ( π β§ π β π ) β§ ( π β π β§ π β π ) ) β ( ( π + π ) β π ) = ( π β ( π β π ) ) ) |
147 |
146
|
ralrimivva |
β’ ( ( π β§ π β π ) β β π β π β π β π ( ( π + π ) β π ) = ( π β ( π β π ) ) ) |
148 |
83 147
|
jca |
β’ ( ( π β§ π β π ) β ( ( ( 0g β πΊ ) β π ) = π β§ β π β π β π β π ( ( π + π ) β π ) = ( π β ( π β π ) ) ) ) |
149 |
148
|
ralrimiva |
β’ ( π β β π β π ( ( ( 0g β πΊ ) β π ) = π β§ β π β π β π β π ( ( π + π ) β π ) = ( π β ( π β π ) ) ) ) |
150 |
55 149
|
jca |
β’ ( π β ( β : ( π Γ π ) βΆ π β§ β π β π ( ( ( 0g β πΊ ) β π ) = π β§ β π β π β π β π ( ( π + π ) β π ) = ( π β ( π β π ) ) ) ) ) |
151 |
1 7 57
|
isga |
β’ ( β β ( πΊ GrpAct π ) β ( ( πΊ β Grp β§ π β V ) β§ ( β : ( π Γ π ) βΆ π β§ β π β π ( ( ( 0g β πΊ ) β π ) = π β§ β π β π β π β π ( ( π + π ) β π ) = ( π β ( π β π ) ) ) ) ) ) |
152 |
13 150 151
|
sylanbrc |
β’ ( π β β β ( πΊ GrpAct π ) ) |