Metamath Proof Explorer


Theorem taylpfval

Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: S is the base set with respect to evaluate the derivatives (generally RR or CC ), F is the function we are approximating, at point B , to order N . The result is a polynomial function of x . (Contributed by Mario Carneiro, 31-Dec-2016)

Ref Expression
Hypotheses taylpfval.s φS
taylpfval.f φF:A
taylpfval.a φAS
taylpfval.n φN0
taylpfval.b φBdomSDnFN
taylpfval.t T=NSTaylFB
Assertion taylpfval φT=xk=0NSDnFkBk!xBk

Proof

Step Hyp Ref Expression
1 taylpfval.s φS
2 taylpfval.f φF:A
3 taylpfval.a φAS
4 taylpfval.n φN0
5 taylpfval.b φBdomSDnFN
6 taylpfval.t T=NSTaylFB
7 4 orcd φN0N=+∞
8 1 2 3 4 5 taylplem1 φk0NBdomSDnFk
9 1 2 3 7 8 6 taylfval φT=xx×fldtsumsk0NSDnFkBk!xBk
10 cnfldbas =Basefld
11 cnfld0 0=0fld
12 cnring fldRing
13 ringcmn fldRingfldCMnd
14 12 13 mp1i φxfldCMnd
15 cnfldtps fldTopSp
16 15 a1i φxfldTopSp
17 ovex 0NV
18 17 inex1 0NV
19 18 a1i φx0NV
20 1 2 3 7 8 taylfvallem1 φxk0NSDnFkBk!xBk
21 20 fmpttd φxk0NSDnFkBk!xBk:0N
22 eqid k0NSDnFkBk!xBk=k0NSDnFkBk!xBk
23 0z 0
24 4 nn0zd φN
25 fzval2 0N0N=0N
26 23 24 25 sylancr φ0N=0N
27 26 adantr φx0N=0N
28 fzfid φx0NFin
29 27 28 eqeltrrd φx0NFin
30 ovexd φxk0NSDnFkBk!xBkV
31 c0ex 0V
32 31 a1i φx0V
33 22 29 30 32 fsuppmptdm φxfinSupp0k0NSDnFkBk!xBk
34 eqid TopOpenfld=TopOpenfld
35 34 cnfldhaus TopOpenfldHaus
36 35 a1i φxTopOpenfldHaus
37 10 11 14 16 19 21 33 34 36 haustsmsid φxfldtsumsk0NSDnFkBk!xBk=fldk0NSDnFkBk!xBk
38 29 20 gsumfsum φxfldk0NSDnFkBk!xBk=k0NSDnFkBk!xBk
39 27 sumeq1d φxk=0NSDnFkBk!xBk=k0NSDnFkBk!xBk
40 38 39 eqtr4d φxfldk0NSDnFkBk!xBk=k=0NSDnFkBk!xBk
41 40 sneqd φxfldk0NSDnFkBk!xBk=k=0NSDnFkBk!xBk
42 37 41 eqtrd φxfldtsumsk0NSDnFkBk!xBk=k=0NSDnFkBk!xBk
43 42 xpeq2d φxx×fldtsumsk0NSDnFkBk!xBk=x×k=0NSDnFkBk!xBk
44 43 iuneq2dv φxx×fldtsumsk0NSDnFkBk!xBk=xx×k=0NSDnFkBk!xBk
45 9 44 eqtrd φT=xx×k=0NSDnFkBk!xBk
46 dfmpt3 xk=0NSDnFkBk!xBk=xx×k=0NSDnFkBk!xBk
47 45 46 eqtr4di φT=xk=0NSDnFkBk!xBk