Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: S is the base set with respect to evaluate the derivatives (generally RR or CC ), F is the function we are approximating, at point B , to order N . The result is a polynomial function of x . (Contributed by Mario Carneiro, 31-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | taylpfval.s | |
|
taylpfval.f | |
||
taylpfval.a | |
||
taylpfval.n | |
||
taylpfval.b | |
||
taylpfval.t | |
||
Assertion | taylpfval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | taylpfval.s | |
|
2 | taylpfval.f | |
|
3 | taylpfval.a | |
|
4 | taylpfval.n | |
|
5 | taylpfval.b | |
|
6 | taylpfval.t | |
|
7 | 4 | orcd | |
8 | 1 2 3 4 5 | taylplem1 | |
9 | 1 2 3 7 8 6 | taylfval | |
10 | cnfldbas | |
|
11 | cnfld0 | |
|
12 | cnring | |
|
13 | ringcmn | |
|
14 | 12 13 | mp1i | |
15 | cnfldtps | |
|
16 | 15 | a1i | |
17 | ovex | |
|
18 | 17 | inex1 | |
19 | 18 | a1i | |
20 | 1 2 3 7 8 | taylfvallem1 | |
21 | 20 | fmpttd | |
22 | eqid | |
|
23 | 0z | |
|
24 | 4 | nn0zd | |
25 | fzval2 | |
|
26 | 23 24 25 | sylancr | |
27 | 26 | adantr | |
28 | fzfid | |
|
29 | 27 28 | eqeltrrd | |
30 | ovexd | |
|
31 | c0ex | |
|
32 | 31 | a1i | |
33 | 22 29 30 32 | fsuppmptdm | |
34 | eqid | |
|
35 | 34 | cnfldhaus | |
36 | 35 | a1i | |
37 | 10 11 14 16 19 21 33 34 36 | haustsmsid | |
38 | 29 20 | gsumfsum | |
39 | 27 | sumeq1d | |
40 | 38 39 | eqtr4d | |
41 | 40 | sneqd | |
42 | 37 41 | eqtrd | |
43 | 42 | xpeq2d | |
44 | 43 | iuneq2dv | |
45 | 9 44 | eqtrd | |
46 | dfmpt3 | |
|
47 | 45 46 | eqtr4di | |