Metamath Proof Explorer


Theorem tcphcphlem2

Description: Lemma for tcphcph : homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n G=toCPreHilW
tcphcph.v V=BaseW
tcphcph.f F=ScalarW
tcphcph.1 φWPreHil
tcphcph.2 φF=fld𝑠K
tcphcph.h ,˙=𝑖W
tcphcph.3 φxKx0xxK
tcphcph.4 φxV0x,˙x
tcphcph.k K=BaseF
tcphcph.s ·˙=W
tcphcphlem2.3 φXK
tcphcphlem2.4 φYV
Assertion tcphcphlem2 φX·˙Y,˙X·˙Y=XY,˙Y

Proof

Step Hyp Ref Expression
1 tcphval.n G=toCPreHilW
2 tcphcph.v V=BaseW
3 tcphcph.f F=ScalarW
4 tcphcph.1 φWPreHil
5 tcphcph.2 φF=fld𝑠K
6 tcphcph.h ,˙=𝑖W
7 tcphcph.3 φxKx0xxK
8 tcphcph.4 φxV0x,˙x
9 tcphcph.k K=BaseF
10 tcphcph.s ·˙=W
11 tcphcphlem2.3 φXK
12 tcphcphlem2.4 φYV
13 1 2 3 4 5 phclm φWCMod
14 3 9 clmsscn WCModK
15 13 14 syl φK
16 15 11 sseldd φX
17 16 cjmulrcld φXX
18 16 cjmulge0d φ0XX
19 1 2 3 4 5 6 tcphcphlem3 φYVY,˙Y
20 12 19 mpdan φY,˙Y
21 oveq12 x=Yx=Yx,˙x=Y,˙Y
22 21 anidms x=Yx,˙x=Y,˙Y
23 22 breq2d x=Y0x,˙x0Y,˙Y
24 8 ralrimiva φxV0x,˙x
25 23 24 12 rspcdva φ0Y,˙Y
26 17 18 20 25 sqrtmuld φXXY,˙Y=XXY,˙Y
27 phllmod WPreHilWLMod
28 4 27 syl φWLMod
29 2 3 10 9 lmodvscl WLModXKYVX·˙YV
30 28 11 12 29 syl3anc φX·˙YV
31 eqid F=F
32 eqid *F=*F
33 3 6 2 9 10 31 32 ipassr WPreHilX·˙YVYVXKX·˙Y,˙X·˙Y=X·˙Y,˙YFX*F
34 4 30 12 11 33 syl13anc φX·˙Y,˙X·˙Y=X·˙Y,˙YFX*F
35 3 clmmul WCMod×=F
36 13 35 syl φ×=F
37 36 oveqd φXY,˙Y=XFY,˙Y
38 3 6 2 9 10 31 ipass WPreHilXKYVYVX·˙Y,˙Y=XFY,˙Y
39 4 11 12 12 38 syl13anc φX·˙Y,˙Y=XFY,˙Y
40 37 39 eqtr4d φXY,˙Y=X·˙Y,˙Y
41 3 clmcj WCMod*=*F
42 13 41 syl φ*=*F
43 42 fveq1d φX=X*F
44 36 40 43 oveq123d φXY,˙YX=X·˙Y,˙YFX*F
45 20 recnd φY,˙Y
46 16 cjcld φX
47 16 45 46 mul32d φXY,˙YX=XXY,˙Y
48 34 44 47 3eqtr2d φX·˙Y,˙X·˙Y=XXY,˙Y
49 48 fveq2d φX·˙Y,˙X·˙Y=XXY,˙Y
50 absval XX=XX
51 16 50 syl φX=XX
52 51 oveq1d φXY,˙Y=XXY,˙Y
53 26 49 52 3eqtr4d φX·˙Y,˙X·˙Y=XY,˙Y