Description: Lemma for tcphcph : homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tcphval.n | |
|
tcphcph.v | |
||
tcphcph.f | |
||
tcphcph.1 | |
||
tcphcph.2 | |
||
tcphcph.h | |
||
tcphcph.3 | |
||
tcphcph.4 | |
||
tcphcph.k | |
||
tcphcph.s | |
||
tcphcphlem2.3 | |
||
tcphcphlem2.4 | |
||
Assertion | tcphcphlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tcphval.n | |
|
2 | tcphcph.v | |
|
3 | tcphcph.f | |
|
4 | tcphcph.1 | |
|
5 | tcphcph.2 | |
|
6 | tcphcph.h | |
|
7 | tcphcph.3 | |
|
8 | tcphcph.4 | |
|
9 | tcphcph.k | |
|
10 | tcphcph.s | |
|
11 | tcphcphlem2.3 | |
|
12 | tcphcphlem2.4 | |
|
13 | 1 2 3 4 5 | phclm | |
14 | 3 9 | clmsscn | |
15 | 13 14 | syl | |
16 | 15 11 | sseldd | |
17 | 16 | cjmulrcld | |
18 | 16 | cjmulge0d | |
19 | 1 2 3 4 5 6 | tcphcphlem3 | |
20 | 12 19 | mpdan | |
21 | oveq12 | |
|
22 | 21 | anidms | |
23 | 22 | breq2d | |
24 | 8 | ralrimiva | |
25 | 23 24 12 | rspcdva | |
26 | 17 18 20 25 | sqrtmuld | |
27 | phllmod | |
|
28 | 4 27 | syl | |
29 | 2 3 10 9 | lmodvscl | |
30 | 28 11 12 29 | syl3anc | |
31 | eqid | |
|
32 | eqid | |
|
33 | 3 6 2 9 10 31 32 | ipassr | |
34 | 4 30 12 11 33 | syl13anc | |
35 | 3 | clmmul | |
36 | 13 35 | syl | |
37 | 36 | oveqd | |
38 | 3 6 2 9 10 31 | ipass | |
39 | 4 11 12 12 38 | syl13anc | |
40 | 37 39 | eqtr4d | |
41 | 3 | clmcj | |
42 | 13 41 | syl | |
43 | 42 | fveq1d | |
44 | 36 40 43 | oveq123d | |
45 | 20 | recnd | |
46 | 16 | cjcld | |
47 | 16 45 46 | mul32d | |
48 | 34 44 47 | 3eqtr2d | |
49 | 48 | fveq2d | |
50 | absval | |
|
51 | 16 50 | syl | |
52 | 51 | oveq1d | |
53 | 26 49 52 | 3eqtr4d | |