| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tcphval.n |
|
| 2 |
|
tcphcph.v |
|
| 3 |
|
tcphcph.f |
|
| 4 |
|
tcphcph.1 |
|
| 5 |
|
tcphcph.2 |
|
| 6 |
|
tcphcph.h |
|
| 7 |
|
tcphcph.3 |
|
| 8 |
|
tcphcph.4 |
|
| 9 |
|
tcphcph.k |
|
| 10 |
|
tcphcph.s |
|
| 11 |
|
tcphcphlem2.3 |
|
| 12 |
|
tcphcphlem2.4 |
|
| 13 |
1 2 3 4 5
|
phclm |
|
| 14 |
3 9
|
clmsscn |
|
| 15 |
13 14
|
syl |
|
| 16 |
15 11
|
sseldd |
|
| 17 |
16
|
cjmulrcld |
|
| 18 |
16
|
cjmulge0d |
|
| 19 |
1 2 3 4 5 6
|
tcphcphlem3 |
|
| 20 |
12 19
|
mpdan |
|
| 21 |
|
oveq12 |
|
| 22 |
21
|
anidms |
|
| 23 |
22
|
breq2d |
|
| 24 |
8
|
ralrimiva |
|
| 25 |
23 24 12
|
rspcdva |
|
| 26 |
17 18 20 25
|
sqrtmuld |
|
| 27 |
|
phllmod |
|
| 28 |
4 27
|
syl |
|
| 29 |
2 3 10 9
|
lmodvscl |
|
| 30 |
28 11 12 29
|
syl3anc |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
3 6 2 9 10 31 32
|
ipassr |
|
| 34 |
4 30 12 11 33
|
syl13anc |
|
| 35 |
3
|
clmmul |
|
| 36 |
13 35
|
syl |
|
| 37 |
36
|
oveqd |
|
| 38 |
3 6 2 9 10 31
|
ipass |
|
| 39 |
4 11 12 12 38
|
syl13anc |
|
| 40 |
37 39
|
eqtr4d |
|
| 41 |
3
|
clmcj |
|
| 42 |
13 41
|
syl |
|
| 43 |
42
|
fveq1d |
|
| 44 |
36 40 43
|
oveq123d |
|
| 45 |
20
|
recnd |
|
| 46 |
16
|
cjcld |
|
| 47 |
16 45 46
|
mul32d |
|
| 48 |
34 44 47
|
3eqtr2d |
|
| 49 |
48
|
fveq2d |
|
| 50 |
|
absval |
|
| 51 |
16 50
|
syl |
|
| 52 |
51
|
oveq1d |
|
| 53 |
26 49 52
|
3eqtr4d |
|