Description: Generalization of Lemma K of Crawley p. 118, cdlemk . TODO: can this be used to shorten uses of cdlemk ? (Contributed by NM, 15-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tendoex.l | |
|
tendoex.h | |
||
tendoex.t | |
||
tendoex.r | |
||
tendoex.e | |
||
Assertion | tendoex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoex.l | |
|
2 | tendoex.h | |
|
3 | tendoex.t | |
|
4 | tendoex.r | |
|
5 | tendoex.e | |
|
6 | simpl1l | |
|
7 | hlop | |
|
8 | 6 7 | syl | |
9 | simpl1 | |
|
10 | simpl2r | |
|
11 | eqid | |
|
12 | 11 2 3 4 | trlcl | |
13 | 9 10 12 | syl2anc | |
14 | simpr | |
|
15 | simpl3 | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 11 1 16 17 | leat | |
19 | 8 13 14 15 18 | syl31anc | |
20 | simp3 | |
|
21 | breq2 | |
|
22 | 20 21 | syl5ibcom | |
23 | 22 | imp | |
24 | simpl1l | |
|
25 | 24 7 | syl | |
26 | simpl1 | |
|
27 | simpl2r | |
|
28 | 26 27 12 | syl2anc | |
29 | 11 1 16 | ople0 | |
30 | 25 28 29 | syl2anc | |
31 | 23 30 | mpbid | |
32 | 31 | olcd | |
33 | simp1 | |
|
34 | simp2l | |
|
35 | 16 17 2 3 4 | trlator0 | |
36 | 33 34 35 | syl2anc | |
37 | 19 32 36 | mpjaodan | |
38 | 37 | 3expa | |
39 | eqcom | |
|
40 | 2 3 4 5 | cdlemk | |
41 | 40 | 3expa | |
42 | 39 41 | sylan2b | |
43 | eqid | |
|
44 | 11 2 3 5 43 | tendo0cl | |
45 | 44 | ad2antrr | |
46 | simplrl | |
|
47 | 43 11 | tendo02 | |
48 | 46 47 | syl | |
49 | 11 16 2 3 4 | trlid0b | |
50 | 49 | adantrl | |
51 | 50 | biimpar | |
52 | 48 51 | eqtr4d | |
53 | fveq1 | |
|
54 | 53 | eqeq1d | |
55 | 54 | rspcev | |
56 | 45 52 55 | syl2anc | |
57 | 42 56 | jaodan | |
58 | 38 57 | syldan | |
59 | 58 | 3impa | |