Metamath Proof Explorer


Theorem tendoex

Description: Generalization of Lemma K of Crawley p. 118, cdlemk . TODO: can this be used to shorten uses of cdlemk ? (Contributed by NM, 15-Oct-2013)

Ref Expression
Hypotheses tendoex.l ˙ = K
tendoex.h H = LHyp K
tendoex.t T = LTrn K W
tendoex.r R = trL K W
tendoex.e E = TEndo K W
Assertion tendoex K HL W H F T N T R N ˙ R F u E u F = N

Proof

Step Hyp Ref Expression
1 tendoex.l ˙ = K
2 tendoex.h H = LHyp K
3 tendoex.t T = LTrn K W
4 tendoex.r R = trL K W
5 tendoex.e E = TEndo K W
6 simpl1l K HL W H F T N T R N ˙ R F R F Atoms K K HL
7 hlop K HL K OP
8 6 7 syl K HL W H F T N T R N ˙ R F R F Atoms K K OP
9 simpl1 K HL W H F T N T R N ˙ R F R F Atoms K K HL W H
10 simpl2r K HL W H F T N T R N ˙ R F R F Atoms K N T
11 eqid Base K = Base K
12 11 2 3 4 trlcl K HL W H N T R N Base K
13 9 10 12 syl2anc K HL W H F T N T R N ˙ R F R F Atoms K R N Base K
14 simpr K HL W H F T N T R N ˙ R F R F Atoms K R F Atoms K
15 simpl3 K HL W H F T N T R N ˙ R F R F Atoms K R N ˙ R F
16 eqid 0. K = 0. K
17 eqid Atoms K = Atoms K
18 11 1 16 17 leat K OP R N Base K R F Atoms K R N ˙ R F R N = R F R N = 0. K
19 8 13 14 15 18 syl31anc K HL W H F T N T R N ˙ R F R F Atoms K R N = R F R N = 0. K
20 simp3 K HL W H F T N T R N ˙ R F R N ˙ R F
21 breq2 R F = 0. K R N ˙ R F R N ˙ 0. K
22 20 21 syl5ibcom K HL W H F T N T R N ˙ R F R F = 0. K R N ˙ 0. K
23 22 imp K HL W H F T N T R N ˙ R F R F = 0. K R N ˙ 0. K
24 simpl1l K HL W H F T N T R N ˙ R F R F = 0. K K HL
25 24 7 syl K HL W H F T N T R N ˙ R F R F = 0. K K OP
26 simpl1 K HL W H F T N T R N ˙ R F R F = 0. K K HL W H
27 simpl2r K HL W H F T N T R N ˙ R F R F = 0. K N T
28 26 27 12 syl2anc K HL W H F T N T R N ˙ R F R F = 0. K R N Base K
29 11 1 16 ople0 K OP R N Base K R N ˙ 0. K R N = 0. K
30 25 28 29 syl2anc K HL W H F T N T R N ˙ R F R F = 0. K R N ˙ 0. K R N = 0. K
31 23 30 mpbid K HL W H F T N T R N ˙ R F R F = 0. K R N = 0. K
32 31 olcd K HL W H F T N T R N ˙ R F R F = 0. K R N = R F R N = 0. K
33 simp1 K HL W H F T N T R N ˙ R F K HL W H
34 simp2l K HL W H F T N T R N ˙ R F F T
35 16 17 2 3 4 trlator0 K HL W H F T R F Atoms K R F = 0. K
36 33 34 35 syl2anc K HL W H F T N T R N ˙ R F R F Atoms K R F = 0. K
37 19 32 36 mpjaodan K HL W H F T N T R N ˙ R F R N = R F R N = 0. K
38 37 3expa K HL W H F T N T R N ˙ R F R N = R F R N = 0. K
39 eqcom R N = R F R F = R N
40 2 3 4 5 cdlemk K HL W H F T N T R F = R N u E u F = N
41 40 3expa K HL W H F T N T R F = R N u E u F = N
42 39 41 sylan2b K HL W H F T N T R N = R F u E u F = N
43 eqid h T I Base K = h T I Base K
44 11 2 3 5 43 tendo0cl K HL W H h T I Base K E
45 44 ad2antrr K HL W H F T N T R N = 0. K h T I Base K E
46 simplrl K HL W H F T N T R N = 0. K F T
47 43 11 tendo02 F T h T I Base K F = I Base K
48 46 47 syl K HL W H F T N T R N = 0. K h T I Base K F = I Base K
49 11 16 2 3 4 trlid0b K HL W H N T N = I Base K R N = 0. K
50 49 adantrl K HL W H F T N T N = I Base K R N = 0. K
51 50 biimpar K HL W H F T N T R N = 0. K N = I Base K
52 48 51 eqtr4d K HL W H F T N T R N = 0. K h T I Base K F = N
53 fveq1 u = h T I Base K u F = h T I Base K F
54 53 eqeq1d u = h T I Base K u F = N h T I Base K F = N
55 54 rspcev h T I Base K E h T I Base K F = N u E u F = N
56 45 52 55 syl2anc K HL W H F T N T R N = 0. K u E u F = N
57 42 56 jaodan K HL W H F T N T R N = R F R N = 0. K u E u F = N
58 38 57 syldan K HL W H F T N T R N ˙ R F u E u F = N
59 58 3impa K HL W H F T N T R N ˙ R F u E u F = N