Metamath Proof Explorer


Theorem tendoex

Description: Generalization of Lemma K of Crawley p. 118, cdlemk . TODO: can this be used to shorten uses of cdlemk ? (Contributed by NM, 15-Oct-2013)

Ref Expression
Hypotheses tendoex.l ˙=K
tendoex.h H=LHypK
tendoex.t T=LTrnKW
tendoex.r R=trLKW
tendoex.e E=TEndoKW
Assertion tendoex KHLWHFTNTRN˙RFuEuF=N

Proof

Step Hyp Ref Expression
1 tendoex.l ˙=K
2 tendoex.h H=LHypK
3 tendoex.t T=LTrnKW
4 tendoex.r R=trLKW
5 tendoex.e E=TEndoKW
6 simpl1l KHLWHFTNTRN˙RFRFAtomsKKHL
7 hlop KHLKOP
8 6 7 syl KHLWHFTNTRN˙RFRFAtomsKKOP
9 simpl1 KHLWHFTNTRN˙RFRFAtomsKKHLWH
10 simpl2r KHLWHFTNTRN˙RFRFAtomsKNT
11 eqid BaseK=BaseK
12 11 2 3 4 trlcl KHLWHNTRNBaseK
13 9 10 12 syl2anc KHLWHFTNTRN˙RFRFAtomsKRNBaseK
14 simpr KHLWHFTNTRN˙RFRFAtomsKRFAtomsK
15 simpl3 KHLWHFTNTRN˙RFRFAtomsKRN˙RF
16 eqid 0.K=0.K
17 eqid AtomsK=AtomsK
18 11 1 16 17 leat KOPRNBaseKRFAtomsKRN˙RFRN=RFRN=0.K
19 8 13 14 15 18 syl31anc KHLWHFTNTRN˙RFRFAtomsKRN=RFRN=0.K
20 simp3 KHLWHFTNTRN˙RFRN˙RF
21 breq2 RF=0.KRN˙RFRN˙0.K
22 20 21 syl5ibcom KHLWHFTNTRN˙RFRF=0.KRN˙0.K
23 22 imp KHLWHFTNTRN˙RFRF=0.KRN˙0.K
24 simpl1l KHLWHFTNTRN˙RFRF=0.KKHL
25 24 7 syl KHLWHFTNTRN˙RFRF=0.KKOP
26 simpl1 KHLWHFTNTRN˙RFRF=0.KKHLWH
27 simpl2r KHLWHFTNTRN˙RFRF=0.KNT
28 26 27 12 syl2anc KHLWHFTNTRN˙RFRF=0.KRNBaseK
29 11 1 16 ople0 KOPRNBaseKRN˙0.KRN=0.K
30 25 28 29 syl2anc KHLWHFTNTRN˙RFRF=0.KRN˙0.KRN=0.K
31 23 30 mpbid KHLWHFTNTRN˙RFRF=0.KRN=0.K
32 31 olcd KHLWHFTNTRN˙RFRF=0.KRN=RFRN=0.K
33 simp1 KHLWHFTNTRN˙RFKHLWH
34 simp2l KHLWHFTNTRN˙RFFT
35 16 17 2 3 4 trlator0 KHLWHFTRFAtomsKRF=0.K
36 33 34 35 syl2anc KHLWHFTNTRN˙RFRFAtomsKRF=0.K
37 19 32 36 mpjaodan KHLWHFTNTRN˙RFRN=RFRN=0.K
38 37 3expa KHLWHFTNTRN˙RFRN=RFRN=0.K
39 eqcom RN=RFRF=RN
40 2 3 4 5 cdlemk KHLWHFTNTRF=RNuEuF=N
41 40 3expa KHLWHFTNTRF=RNuEuF=N
42 39 41 sylan2b KHLWHFTNTRN=RFuEuF=N
43 eqid hTIBaseK=hTIBaseK
44 11 2 3 5 43 tendo0cl KHLWHhTIBaseKE
45 44 ad2antrr KHLWHFTNTRN=0.KhTIBaseKE
46 simplrl KHLWHFTNTRN=0.KFT
47 43 11 tendo02 FThTIBaseKF=IBaseK
48 46 47 syl KHLWHFTNTRN=0.KhTIBaseKF=IBaseK
49 11 16 2 3 4 trlid0b KHLWHNTN=IBaseKRN=0.K
50 49 adantrl KHLWHFTNTN=IBaseKRN=0.K
51 50 biimpar KHLWHFTNTRN=0.KN=IBaseK
52 48 51 eqtr4d KHLWHFTNTRN=0.KhTIBaseKF=N
53 fveq1 u=hTIBaseKuF=hTIBaseKF
54 53 eqeq1d u=hTIBaseKuF=NhTIBaseKF=N
55 54 rspcev hTIBaseKEhTIBaseKF=NuEuF=N
56 45 52 55 syl2anc KHLWHFTNTRN=0.KuEuF=N
57 42 56 jaodan KHLWHFTNTRN=RFRN=0.KuEuF=N
58 38 57 syldan KHLWHFTNTRN˙RFuEuF=N
59 58 3impa KHLWHFTNTRN˙RFuEuF=N