Metamath Proof Explorer


Theorem tfrlem11

Description: Lemma for transfinite recursion. Compute the value of C . (Contributed by NM, 18-Aug-1994) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypotheses tfrlem.1 A=f|xOnfFnxyxfy=Ffy
tfrlem.3 C=recsFdomrecsFFrecsF
Assertion tfrlem11 domrecsFOnBsucdomrecsFCB=FCB

Proof

Step Hyp Ref Expression
1 tfrlem.1 A=f|xOnfFnxyxfy=Ffy
2 tfrlem.3 C=recsFdomrecsFFrecsF
3 elsuci BsucdomrecsFBdomrecsFB=domrecsF
4 1 2 tfrlem10 domrecsFOnCFnsucdomrecsF
5 fnfun CFnsucdomrecsFFunC
6 4 5 syl domrecsFOnFunC
7 ssun1 recsFrecsFdomrecsFFrecsF
8 7 2 sseqtrri recsFC
9 1 tfrlem9 BdomrecsFrecsFB=FrecsFB
10 funssfv FunCrecsFCBdomrecsFCB=recsFB
11 10 3expa FunCrecsFCBdomrecsFCB=recsFB
12 11 adantrl FunCrecsFCdomrecsFOnBdomrecsFCB=recsFB
13 onelss domrecsFOnBdomrecsFBdomrecsF
14 13 imp domrecsFOnBdomrecsFBdomrecsF
15 fun2ssres FunCrecsFCBdomrecsFCB=recsFB
16 15 3expa FunCrecsFCBdomrecsFCB=recsFB
17 16 fveq2d FunCrecsFCBdomrecsFFCB=FrecsFB
18 14 17 sylan2 FunCrecsFCdomrecsFOnBdomrecsFFCB=FrecsFB
19 12 18 eqeq12d FunCrecsFCdomrecsFOnBdomrecsFCB=FCBrecsFB=FrecsFB
20 9 19 imbitrrid FunCrecsFCdomrecsFOnBdomrecsFBdomrecsFCB=FCB
21 8 20 mpanl2 FunCdomrecsFOnBdomrecsFBdomrecsFCB=FCB
22 6 21 sylan domrecsFOndomrecsFOnBdomrecsFBdomrecsFCB=FCB
23 22 exp32 domrecsFOndomrecsFOnBdomrecsFBdomrecsFCB=FCB
24 23 pm2.43i domrecsFOnBdomrecsFBdomrecsFCB=FCB
25 24 pm2.43d domrecsFOnBdomrecsFCB=FCB
26 opex BFCBV
27 26 snid BFCBBFCB
28 opeq1 B=domrecsFBFCB=domrecsFFCB
29 28 adantl domrecsFOnB=domrecsFBFCB=domrecsFFCB
30 eqimss B=domrecsFBdomrecsF
31 8 15 mp3an2 FunCBdomrecsFCB=recsFB
32 6 30 31 syl2an domrecsFOnB=domrecsFCB=recsFB
33 reseq2 B=domrecsFrecsFB=recsFdomrecsF
34 1 tfrlem6 RelrecsF
35 resdm RelrecsFrecsFdomrecsF=recsF
36 34 35 ax-mp recsFdomrecsF=recsF
37 33 36 eqtrdi B=domrecsFrecsFB=recsF
38 37 adantl domrecsFOnB=domrecsFrecsFB=recsF
39 32 38 eqtrd domrecsFOnB=domrecsFCB=recsF
40 39 fveq2d domrecsFOnB=domrecsFFCB=FrecsF
41 40 opeq2d domrecsFOnB=domrecsFdomrecsFFCB=domrecsFFrecsF
42 29 41 eqtrd domrecsFOnB=domrecsFBFCB=domrecsFFrecsF
43 42 sneqd domrecsFOnB=domrecsFBFCB=domrecsFFrecsF
44 27 43 eleqtrid domrecsFOnB=domrecsFBFCBdomrecsFFrecsF
45 elun2 BFCBdomrecsFFrecsFBFCBrecsFdomrecsFFrecsF
46 44 45 syl domrecsFOnB=domrecsFBFCBrecsFdomrecsFFrecsF
47 46 2 eleqtrrdi domrecsFOnB=domrecsFBFCBC
48 simpr domrecsFOnB=domrecsFB=domrecsF
49 sucidg domrecsFOndomrecsFsucdomrecsF
50 49 adantr domrecsFOnB=domrecsFdomrecsFsucdomrecsF
51 48 50 eqeltrd domrecsFOnB=domrecsFBsucdomrecsF
52 fnopfvb CFnsucdomrecsFBsucdomrecsFCB=FCBBFCBC
53 4 51 52 syl2an2r domrecsFOnB=domrecsFCB=FCBBFCBC
54 47 53 mpbird domrecsFOnB=domrecsFCB=FCB
55 54 ex domrecsFOnB=domrecsFCB=FCB
56 25 55 jaod domrecsFOnBdomrecsFB=domrecsFCB=FCB
57 3 56 syl5 domrecsFOnBsucdomrecsFCB=FCB