Metamath Proof Explorer


Theorem tmdcn2

Description: Write out the definition of continuity of +g explicitly. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses tmdcn2.1 B=BaseG
tmdcn2.2 J=TopOpenG
tmdcn2.3 +˙=+G
Assertion tmdcn2 GTopMndUJXBYBX+˙YUuJvJXuYvxuyvx+˙yU

Proof

Step Hyp Ref Expression
1 tmdcn2.1 B=BaseG
2 tmdcn2.2 J=TopOpenG
3 tmdcn2.3 +˙=+G
4 2 1 tmdtopon GTopMndJTopOnB
5 4 ad2antrr GTopMndUJXBYBX+˙YUJTopOnB
6 eqid +𝑓G=+𝑓G
7 2 6 tmdcn GTopMnd+𝑓GJ×tJCnJ
8 7 ad2antrr GTopMndUJXBYBX+˙YU+𝑓GJ×tJCnJ
9 simpr1 GTopMndUJXBYBX+˙YUXB
10 simpr2 GTopMndUJXBYBX+˙YUYB
11 9 10 opelxpd GTopMndUJXBYBX+˙YUXYB×B
12 txtopon JTopOnBJTopOnBJ×tJTopOnB×B
13 5 5 12 syl2anc GTopMndUJXBYBX+˙YUJ×tJTopOnB×B
14 toponuni J×tJTopOnB×BB×B=J×tJ
15 13 14 syl GTopMndUJXBYBX+˙YUB×B=J×tJ
16 11 15 eleqtrd GTopMndUJXBYBX+˙YUXYJ×tJ
17 eqid J×tJ=J×tJ
18 17 cncnpi +𝑓GJ×tJCnJXYJ×tJ+𝑓GJ×tJCnPJXY
19 8 16 18 syl2anc GTopMndUJXBYBX+˙YU+𝑓GJ×tJCnPJXY
20 simplr GTopMndUJXBYBX+˙YUUJ
21 1 3 6 plusfval XBYBX+𝑓GY=X+˙Y
22 9 10 21 syl2anc GTopMndUJXBYBX+˙YUX+𝑓GY=X+˙Y
23 simpr3 GTopMndUJXBYBX+˙YUX+˙YU
24 22 23 eqeltrd GTopMndUJXBYBX+˙YUX+𝑓GYU
25 5 5 19 20 9 10 24 txcnpi GTopMndUJXBYBX+˙YUuJvJXuYvu×v+𝑓G-1U
26 dfss3 u×v+𝑓G-1Uzu×vz+𝑓G-1U
27 eleq1 z=xyz+𝑓G-1Uxy+𝑓G-1U
28 1 6 plusffn +𝑓GFnB×B
29 elpreima +𝑓GFnB×Bxy+𝑓G-1UxyB×B+𝑓GxyU
30 28 29 ax-mp xy+𝑓G-1UxyB×B+𝑓GxyU
31 27 30 bitrdi z=xyz+𝑓G-1UxyB×B+𝑓GxyU
32 31 ralxp zu×vz+𝑓G-1UxuyvxyB×B+𝑓GxyU
33 26 32 bitri u×v+𝑓G-1UxuyvxyB×B+𝑓GxyU
34 opelxp xyB×BxByB
35 df-ov x+𝑓Gy=+𝑓Gxy
36 1 3 6 plusfval xByBx+𝑓Gy=x+˙y
37 35 36 eqtr3id xByB+𝑓Gxy=x+˙y
38 34 37 sylbi xyB×B+𝑓Gxy=x+˙y
39 38 eleq1d xyB×B+𝑓GxyUx+˙yU
40 39 biimpa xyB×B+𝑓GxyUx+˙yU
41 40 2ralimi xuyvxyB×B+𝑓GxyUxuyvx+˙yU
42 33 41 sylbi u×v+𝑓G-1Uxuyvx+˙yU
43 42 3anim3i XuYvu×v+𝑓G-1UXuYvxuyvx+˙yU
44 43 reximi vJXuYvu×v+𝑓G-1UvJXuYvxuyvx+˙yU
45 44 reximi uJvJXuYvu×v+𝑓G-1UuJvJXuYvxuyvx+˙yU
46 25 45 syl GTopMndUJXBYBX+˙YUuJvJXuYvxuyvx+˙yU