Metamath Proof Explorer


Theorem tngnm

Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses tngnm.t T=GtoNrmGrpN
tngnm.x X=BaseG
tngnm.a AV
Assertion tngnm GGrpN:XAN=normT

Proof

Step Hyp Ref Expression
1 tngnm.t T=GtoNrmGrpN
2 tngnm.x X=BaseG
3 tngnm.a AV
4 simpr GGrpN:XAN:XA
5 4 feqmptd GGrpN:XAN=xXNx
6 eqid -G=-G
7 2 6 grpsubf GGrp-G:X×XX
8 7 ad2antrr GGrpN:XAxX-G:X×XX
9 simpr GGrpN:XAxXxX
10 eqid 0G=0G
11 2 10 grpidcl GGrp0GX
12 11 ad2antrr GGrpN:XAxX0GX
13 9 12 opelxpd GGrpN:XAxXx0GX×X
14 fvco3 -G:X×XXx0GX×XN-Gx0G=N-Gx0G
15 8 13 14 syl2anc GGrpN:XAxXN-Gx0G=N-Gx0G
16 df-ov xN-G0G=N-Gx0G
17 df-ov x-G0G=-Gx0G
18 17 fveq2i Nx-G0G=N-Gx0G
19 15 16 18 3eqtr4g GGrpN:XAxXxN-G0G=Nx-G0G
20 2 10 6 grpsubid1 GGrpxXx-G0G=x
21 20 adantlr GGrpN:XAxXx-G0G=x
22 21 fveq2d GGrpN:XAxXNx-G0G=Nx
23 19 22 eqtr2d GGrpN:XAxXNx=xN-G0G
24 23 mpteq2dva GGrpN:XAxXNx=xXxN-G0G
25 2 fvexi XV
26 fex2 N:XAXVAVNV
27 25 3 26 mp3an23 N:XANV
28 27 adantl GGrpN:XANV
29 1 2 tngbas NVX=BaseT
30 28 29 syl GGrpN:XAX=BaseT
31 1 6 tngds NVN-G=distT
32 28 31 syl GGrpN:XAN-G=distT
33 eqidd GGrpN:XAx=x
34 1 10 tng0 NV0G=0T
35 28 34 syl GGrpN:XA0G=0T
36 32 33 35 oveq123d GGrpN:XAxN-G0G=xdistT0T
37 30 36 mpteq12dv GGrpN:XAxXxN-G0G=xBaseTxdistT0T
38 eqid normT=normT
39 eqid BaseT=BaseT
40 eqid 0T=0T
41 eqid distT=distT
42 38 39 40 41 nmfval normT=xBaseTxdistT0T
43 37 42 eqtr4di GGrpN:XAxXxN-G0G=normT
44 5 24 43 3eqtrd GGrpN:XAN=normT