Metamath Proof Explorer


Theorem trfbas2

Description: Conditions for the trace of a filter base F to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion trfbas2 FfBasYAYF𝑡AfBasA¬F𝑡A

Proof

Step Hyp Ref Expression
1 elfvdm FfBasYYdomfBas
2 ssexg AYYdomfBasAV
3 2 ancoms YdomfBasAYAV
4 1 3 sylan FfBasYAYAV
5 restsspw F𝑡A𝒫A
6 5 a1i FfBasYAYF𝑡A𝒫A
7 fbasne0 FfBasYF
8 7 adantr FfBasYAYF
9 n0 FxxF
10 8 9 sylib FfBasYAYxxF
11 elrestr FfBasYAVxFxAF𝑡A
12 11 3expia FfBasYAVxFxAF𝑡A
13 4 12 syldan FfBasYAYxFxAF𝑡A
14 ne0i xAF𝑡AF𝑡A
15 13 14 syl6 FfBasYAYxFF𝑡A
16 15 exlimdv FfBasYAYxxFF𝑡A
17 10 16 mpd FfBasYAYF𝑡A
18 fbasssin FfBasYzFwFxFxzw
19 18 3expb FfBasYzFwFxFxzw
20 19 adantlr FfBasYAYzFwFxFxzw
21 simplll FfBasYAYzFwFxFxzwFfBasY
22 4 ad2antrr FfBasYAYzFwFxFxzwAV
23 simprl FfBasYAYzFwFxFxzwxF
24 21 22 23 11 syl3anc FfBasYAYzFwFxFxzwxAF𝑡A
25 ssrin xzwxAzwA
26 25 ad2antll FfBasYAYzFwFxFxzwxAzwA
27 vex xV
28 27 inex1 xAV
29 28 elpw xA𝒫zwAxAzwA
30 26 29 sylibr FfBasYAYzFwFxFxzwxA𝒫zwA
31 inelcm xAF𝑡AxA𝒫zwAF𝑡A𝒫zwA
32 24 30 31 syl2anc FfBasYAYzFwFxFxzwF𝑡A𝒫zwA
33 20 32 rexlimddv FfBasYAYzFwFF𝑡A𝒫zwA
34 33 ralrimivva FfBasYAYzFwFF𝑡A𝒫zwA
35 vex zV
36 35 inex1 zAV
37 36 a1i FfBasYAYzFzAV
38 elrest FfBasYAVxF𝑡AzFx=zA
39 4 38 syldan FfBasYAYxF𝑡AzFx=zA
40 vex wV
41 40 inex1 wAV
42 41 a1i FfBasYAYx=zAwFwAV
43 elrest FfBasYAVyF𝑡AwFy=wA
44 4 43 syldan FfBasYAYyF𝑡AwFy=wA
45 44 adantr FfBasYAYx=zAyF𝑡AwFy=wA
46 ineq12 x=zAy=wAxy=zAwA
47 inindir zwA=zAwA
48 46 47 eqtr4di x=zAy=wAxy=zwA
49 48 pweqd x=zAy=wA𝒫xy=𝒫zwA
50 49 ineq2d x=zAy=wAF𝑡A𝒫xy=F𝑡A𝒫zwA
51 50 neeq1d x=zAy=wAF𝑡A𝒫xyF𝑡A𝒫zwA
52 51 adantll FfBasYAYx=zAy=wAF𝑡A𝒫xyF𝑡A𝒫zwA
53 42 45 52 ralxfr2d FfBasYAYx=zAyF𝑡AF𝑡A𝒫xywFF𝑡A𝒫zwA
54 37 39 53 ralxfr2d FfBasYAYxF𝑡AyF𝑡AF𝑡A𝒫xyzFwFF𝑡A𝒫zwA
55 34 54 mpbird FfBasYAYxF𝑡AyF𝑡AF𝑡A𝒫xy
56 isfbas AVF𝑡AfBasAF𝑡A𝒫AF𝑡AF𝑡AxF𝑡AyF𝑡AF𝑡A𝒫xy
57 56 baibd AVF𝑡A𝒫AF𝑡AfBasAF𝑡AF𝑡AxF𝑡AyF𝑡AF𝑡A𝒫xy
58 3anan32 F𝑡AF𝑡AxF𝑡AyF𝑡AF𝑡A𝒫xyF𝑡AxF𝑡AyF𝑡AF𝑡A𝒫xyF𝑡A
59 57 58 bitrdi AVF𝑡A𝒫AF𝑡AfBasAF𝑡AxF𝑡AyF𝑡AF𝑡A𝒫xyF𝑡A
60 59 baibd AVF𝑡A𝒫AF𝑡AxF𝑡AyF𝑡AF𝑡A𝒫xyF𝑡AfBasAF𝑡A
61 4 6 17 55 60 syl22anc FfBasYAYF𝑡AfBasAF𝑡A
62 df-nel F𝑡A¬F𝑡A
63 61 62 bitrdi FfBasYAYF𝑡AfBasA¬F𝑡A