Metamath Proof Explorer


Theorem trlval3

Description: The value of the trace of a lattice translation in terms of 2 atoms. TODO: Try to shorten proof. (Contributed by NM, 3-May-2013)

Ref Expression
Hypotheses trlval3.l ˙=K
trlval3.j ˙=joinK
trlval3.m ˙=meetK
trlval3.a A=AtomsK
trlval3.h H=LHypK
trlval3.t T=LTrnKW
trlval3.r R=trLKW
Assertion trlval3 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQRF=P˙FP˙Q˙FQ

Proof

Step Hyp Ref Expression
1 trlval3.l ˙=K
2 trlval3.j ˙=joinK
3 trlval3.m ˙=meetK
4 trlval3.a A=AtomsK
5 trlval3.h H=LHypK
6 trlval3.t T=LTrnKW
7 trlval3.r R=trLKW
8 simpl1 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PKHLWH
9 simpl31 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PPA¬P˙W
10 simpl2 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PFT
11 simpr KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PFP=P
12 eqid 0.K=0.K
13 1 12 4 5 6 7 trl0 KHLWHPA¬P˙WFTFP=PRF=0.K
14 8 9 10 11 13 syl112anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PRF=0.K
15 simpl33 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PP˙FPQ˙FQ
16 simpl1l KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PKHL
17 hlatl KHLKAtLat
18 16 17 syl KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PKAtLat
19 11 oveq2d KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PP˙FP=P˙P
20 simp31l KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQPA
21 20 adantr KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PPA
22 2 4 hlatjidm KHLPAP˙P=P
23 16 21 22 syl2anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PP˙P=P
24 19 23 eqtrd KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PP˙FP=P
25 24 21 eqeltrd KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PP˙FPA
26 simp1 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQKHLWH
27 simp2 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFT
28 simp31 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQPA¬P˙W
29 simp32 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQQA¬Q˙W
30 1 4 5 6 ltrn2ateq KHLWHFTPA¬P˙WQA¬Q˙WFP=PFQ=Q
31 26 27 28 29 30 syl13anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PFQ=Q
32 31 biimpa KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PFQ=Q
33 32 oveq2d KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PQ˙FQ=Q˙Q
34 simp32l KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQQA
35 34 adantr KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PQA
36 2 4 hlatjidm KHLQAQ˙Q=Q
37 16 35 36 syl2anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PQ˙Q=Q
38 33 37 eqtrd KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PQ˙FQ=Q
39 38 35 eqeltrd KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PQ˙FQA
40 3 12 4 atnem0 KAtLatP˙FPAQ˙FQAP˙FPQ˙FQP˙FP˙Q˙FQ=0.K
41 18 25 39 40 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PP˙FPQ˙FQP˙FP˙Q˙FQ=0.K
42 15 41 mpbid KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PP˙FP˙Q˙FQ=0.K
43 14 42 eqtr4d KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFP=PRF=P˙FP˙Q˙FQ
44 simpl1 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPKHLWH
45 simpl2 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPFT
46 simpl31 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPPA¬P˙W
47 1 2 3 4 5 6 7 trlval2 KHLWHFTPA¬P˙WRF=P˙FP˙W
48 44 45 46 47 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPRF=P˙FP˙W
49 simpl1l KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPKHL
50 49 hllatd KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPKLat
51 20 adantr KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPPA
52 1 4 5 6 ltrnat KHLWHFTPAFPA
53 44 45 51 52 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPFPA
54 eqid BaseK=BaseK
55 54 2 4 hlatjcl KHLPAFPAP˙FPBaseK
56 49 51 53 55 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPP˙FPBaseK
57 simpl1r KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPWH
58 54 5 lhpbase WHWBaseK
59 57 58 syl KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPWBaseK
60 54 1 3 latmle1 KLatP˙FPBaseKWBaseKP˙FP˙W˙P˙FP
61 50 56 59 60 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPP˙FP˙W˙P˙FP
62 48 61 eqbrtrd KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPRF˙P˙FP
63 simpl32 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPQA¬Q˙W
64 1 2 3 4 5 6 7 trlval2 KHLWHFTQA¬Q˙WRF=Q˙FQ˙W
65 44 45 63 64 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPRF=Q˙FQ˙W
66 34 adantr KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPQA
67 1 4 5 6 ltrnat KHLWHFTQAFQA
68 44 45 66 67 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPFQA
69 54 2 4 hlatjcl KHLQAFQAQ˙FQBaseK
70 49 66 68 69 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPQ˙FQBaseK
71 54 1 3 latmle1 KLatQ˙FQBaseKWBaseKQ˙FQ˙W˙Q˙FQ
72 50 70 59 71 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPQ˙FQ˙W˙Q˙FQ
73 65 72 eqbrtrd KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPRF˙Q˙FQ
74 54 5 6 7 trlcl KHLWHFTRFBaseK
75 44 45 74 syl2anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPRFBaseK
76 54 1 3 latlem12 KLatRFBaseKP˙FPBaseKQ˙FQBaseKRF˙P˙FPRF˙Q˙FQRF˙P˙FP˙Q˙FQ
77 50 75 56 70 76 syl13anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPRF˙P˙FPRF˙Q˙FQRF˙P˙FP˙Q˙FQ
78 62 73 77 mpbi2and KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPRF˙P˙FP˙Q˙FQ
79 49 17 syl KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPKAtLat
80 simpr KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPFPP
81 1 4 5 6 7 trlat KHLWHPA¬P˙WFTFPPRFA
82 44 46 45 80 81 syl112anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPRFA
83 54 3 latmcl KLatP˙FPBaseKQ˙FQBaseKP˙FP˙Q˙FQBaseK
84 50 56 70 83 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPP˙FP˙Q˙FQBaseK
85 54 1 12 4 atlen0 KAtLatP˙FP˙Q˙FQBaseKRFARF˙P˙FP˙Q˙FQP˙FP˙Q˙FQ0.K
86 79 84 82 78 85 syl31anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPP˙FP˙Q˙FQ0.K
87 86 neneqd KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPP¬P˙FP˙Q˙FQ=0.K
88 simpl33 KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPP˙FPQ˙FQ
89 2 3 12 4 2atmat0 KHLPAFPAQAFQAP˙FPQ˙FQP˙FP˙Q˙FQAP˙FP˙Q˙FQ=0.K
90 49 51 53 66 68 88 89 syl33anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPP˙FP˙Q˙FQAP˙FP˙Q˙FQ=0.K
91 90 ord KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPP¬P˙FP˙Q˙FQAP˙FP˙Q˙FQ=0.K
92 87 91 mt3d KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPP˙FP˙Q˙FQA
93 1 4 atcmp KAtLatRFAP˙FP˙Q˙FQARF˙P˙FP˙Q˙FQRF=P˙FP˙Q˙FQ
94 79 82 92 93 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPRF˙P˙FP˙Q˙FQRF=P˙FP˙Q˙FQ
95 78 94 mpbid KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQFPPRF=P˙FP˙Q˙FQ
96 43 95 pm2.61dane KHLWHFTPA¬P˙WQA¬Q˙WP˙FPQ˙FQRF=P˙FP˙Q˙FQ