Description: Lemma for ttukey . (Contributed by Mario Carneiro, 11-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ttukeylem.1 | |
|
ttukeylem.2 | |
||
ttukeylem.3 | |
||
ttukeylem.4 | |
||
Assertion | ttukeylem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ttukeylem.1 | |
|
2 | ttukeylem.2 | |
|
3 | ttukeylem.3 | |
|
4 | ttukeylem.4 | |
|
5 | 4 | tfr2 | |
6 | 5 | adantl | |
7 | eqidd | |
|
8 | simpr | |
|
9 | 8 | dmeqd | |
10 | 4 | tfr1 | |
11 | onss | |
|
12 | 11 | ad2antlr | |
13 | fnssres | |
|
14 | 10 12 13 | sylancr | |
15 | 14 | fndmd | |
16 | 9 15 | eqtrd | |
17 | 16 | unieqd | |
18 | 16 17 | eqeq12d | |
19 | 16 | eqeq1d | |
20 | 8 | rneqd | |
21 | df-ima | |
|
22 | 20 21 | eqtr4di | |
23 | 22 | unieqd | |
24 | 19 23 | ifbieq2d | |
25 | 8 17 | fveq12d | |
26 | 17 | fveq2d | |
27 | 26 | sneqd | |
28 | 25 27 | uneq12d | |
29 | 28 | eleq1d | |
30 | eqidd | |
|
31 | 29 27 30 | ifbieq12d | |
32 | 25 31 | uneq12d | |
33 | 18 24 32 | ifbieq12d | |
34 | onuni | |
|
35 | 34 | ad3antlr | |
36 | sucidg | |
|
37 | 35 36 | syl | |
38 | eloni | |
|
39 | 38 | ad2antlr | |
40 | orduniorsuc | |
|
41 | 39 40 | syl | |
42 | 41 | orcanai | |
43 | 37 42 | eleqtrrd | |
44 | 43 | fvresd | |
45 | 44 | uneq1d | |
46 | 45 | eleq1d | |
47 | 46 | ifbid | |
48 | 44 47 | uneq12d | |
49 | 48 | ifeq2da | |
50 | 33 49 | eqtrd | |
51 | fnfun | |
|
52 | 10 51 | ax-mp | |
53 | simpr | |
|
54 | resfunexg | |
|
55 | 52 53 54 | sylancr | |
56 | 2 | elexd | |
57 | funimaexg | |
|
58 | 52 57 | mpan | |
59 | 58 | uniexd | |
60 | ifcl | |
|
61 | 56 59 60 | syl2an | |
62 | fvex | |
|
63 | snex | |
|
64 | 0ex | |
|
65 | 63 64 | ifex | |
66 | 62 65 | unex | |
67 | ifcl | |
|
68 | 61 66 67 | sylancl | |
69 | 7 50 55 68 | fvmptd | |
70 | 6 69 | eqtrd | |