Metamath Proof Explorer


Theorem txcnmpt

Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses txcnmpt.1 W = U
txcnmpt.2 H = x W F x G x
Assertion txcnmpt F U Cn R G U Cn S H U Cn R × t S

Proof

Step Hyp Ref Expression
1 txcnmpt.1 W = U
2 txcnmpt.2 H = x W F x G x
3 eqid R = R
4 1 3 cnf F U Cn R F : W R
5 4 adantr F U Cn R G U Cn S F : W R
6 5 ffvelrnda F U Cn R G U Cn S x W F x R
7 eqid S = S
8 1 7 cnf G U Cn S G : W S
9 8 adantl F U Cn R G U Cn S G : W S
10 9 ffvelrnda F U Cn R G U Cn S x W G x S
11 6 10 opelxpd F U Cn R G U Cn S x W F x G x R × S
12 11 2 fmptd F U Cn R G U Cn S H : W R × S
13 2 mptpreima H -1 r × s = x W | F x G x r × s
14 5 adantr F U Cn R G U Cn S r R s S F : W R
15 14 adantr F U Cn R G U Cn S r R s S x W F : W R
16 ffn F : W R F Fn W
17 elpreima F Fn W x F -1 r x W F x r
18 15 16 17 3syl F U Cn R G U Cn S r R s S x W x F -1 r x W F x r
19 ibar x W F x r x W F x r
20 19 adantl F U Cn R G U Cn S r R s S x W F x r x W F x r
21 18 20 bitr4d F U Cn R G U Cn S r R s S x W x F -1 r F x r
22 9 ad2antrr F U Cn R G U Cn S r R s S x W G : W S
23 ffn G : W S G Fn W
24 elpreima G Fn W x G -1 s x W G x s
25 22 23 24 3syl F U Cn R G U Cn S r R s S x W x G -1 s x W G x s
26 ibar x W G x s x W G x s
27 26 adantl F U Cn R G U Cn S r R s S x W G x s x W G x s
28 25 27 bitr4d F U Cn R G U Cn S r R s S x W x G -1 s G x s
29 21 28 anbi12d F U Cn R G U Cn S r R s S x W x F -1 r x G -1 s F x r G x s
30 elin x F -1 r G -1 s x F -1 r x G -1 s
31 opelxp F x G x r × s F x r G x s
32 29 30 31 3bitr4g F U Cn R G U Cn S r R s S x W x F -1 r G -1 s F x G x r × s
33 32 rabbi2dva F U Cn R G U Cn S r R s S W F -1 r G -1 s = x W | F x G x r × s
34 inss1 F -1 r G -1 s F -1 r
35 cnvimass F -1 r dom F
36 34 35 sstri F -1 r G -1 s dom F
37 36 14 fssdm F U Cn R G U Cn S r R s S F -1 r G -1 s W
38 sseqin2 F -1 r G -1 s W W F -1 r G -1 s = F -1 r G -1 s
39 37 38 sylib F U Cn R G U Cn S r R s S W F -1 r G -1 s = F -1 r G -1 s
40 33 39 eqtr3d F U Cn R G U Cn S r R s S x W | F x G x r × s = F -1 r G -1 s
41 13 40 eqtrid F U Cn R G U Cn S r R s S H -1 r × s = F -1 r G -1 s
42 cntop1 G U Cn S U Top
43 42 adantl F U Cn R G U Cn S U Top
44 43 adantr F U Cn R G U Cn S r R s S U Top
45 cnima F U Cn R r R F -1 r U
46 45 ad2ant2r F U Cn R G U Cn S r R s S F -1 r U
47 cnima G U Cn S s S G -1 s U
48 47 ad2ant2l F U Cn R G U Cn S r R s S G -1 s U
49 inopn U Top F -1 r U G -1 s U F -1 r G -1 s U
50 44 46 48 49 syl3anc F U Cn R G U Cn S r R s S F -1 r G -1 s U
51 41 50 eqeltrd F U Cn R G U Cn S r R s S H -1 r × s U
52 51 ralrimivva F U Cn R G U Cn S r R s S H -1 r × s U
53 vex r V
54 vex s V
55 53 54 xpex r × s V
56 55 rgen2w r R s S r × s V
57 eqid r R , s S r × s = r R , s S r × s
58 imaeq2 z = r × s H -1 z = H -1 r × s
59 58 eleq1d z = r × s H -1 z U H -1 r × s U
60 57 59 ralrnmpo r R s S r × s V z ran r R , s S r × s H -1 z U r R s S H -1 r × s U
61 56 60 ax-mp z ran r R , s S r × s H -1 z U r R s S H -1 r × s U
62 52 61 sylibr F U Cn R G U Cn S z ran r R , s S r × s H -1 z U
63 1 toptopon U Top U TopOn W
64 43 63 sylib F U Cn R G U Cn S U TopOn W
65 cntop2 F U Cn R R Top
66 cntop2 G U Cn S S Top
67 eqid ran r R , s S r × s = ran r R , s S r × s
68 67 txval R Top S Top R × t S = topGen ran r R , s S r × s
69 65 66 68 syl2an F U Cn R G U Cn S R × t S = topGen ran r R , s S r × s
70 toptopon2 R Top R TopOn R
71 65 70 sylib F U Cn R R TopOn R
72 toptopon2 S Top S TopOn S
73 66 72 sylib G U Cn S S TopOn S
74 txtopon R TopOn R S TopOn S R × t S TopOn R × S
75 71 73 74 syl2an F U Cn R G U Cn S R × t S TopOn R × S
76 64 69 75 tgcn F U Cn R G U Cn S H U Cn R × t S H : W R × S z ran r R , s S r × s H -1 z U
77 12 62 76 mpbir2and F U Cn R G U Cn S H U Cn R × t S