| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txcnmpt.1 |
|
| 2 |
|
txcnmpt.2 |
|
| 3 |
|
eqid |
|
| 4 |
1 3
|
cnf |
|
| 5 |
4
|
adantr |
|
| 6 |
5
|
ffvelcdmda |
|
| 7 |
|
eqid |
|
| 8 |
1 7
|
cnf |
|
| 9 |
8
|
adantl |
|
| 10 |
9
|
ffvelcdmda |
|
| 11 |
6 10
|
opelxpd |
|
| 12 |
11 2
|
fmptd |
|
| 13 |
2
|
mptpreima |
|
| 14 |
5
|
adantr |
|
| 15 |
14
|
adantr |
|
| 16 |
|
ffn |
|
| 17 |
|
elpreima |
|
| 18 |
15 16 17
|
3syl |
|
| 19 |
|
ibar |
|
| 20 |
19
|
adantl |
|
| 21 |
18 20
|
bitr4d |
|
| 22 |
9
|
ad2antrr |
|
| 23 |
|
ffn |
|
| 24 |
|
elpreima |
|
| 25 |
22 23 24
|
3syl |
|
| 26 |
|
ibar |
|
| 27 |
26
|
adantl |
|
| 28 |
25 27
|
bitr4d |
|
| 29 |
21 28
|
anbi12d |
|
| 30 |
|
elin |
|
| 31 |
|
opelxp |
|
| 32 |
29 30 31
|
3bitr4g |
|
| 33 |
32
|
rabbi2dva |
|
| 34 |
|
inss1 |
|
| 35 |
|
cnvimass |
|
| 36 |
34 35
|
sstri |
|
| 37 |
36 14
|
fssdm |
|
| 38 |
|
sseqin2 |
|
| 39 |
37 38
|
sylib |
|
| 40 |
33 39
|
eqtr3d |
|
| 41 |
13 40
|
eqtrid |
|
| 42 |
|
cntop1 |
|
| 43 |
42
|
adantl |
|
| 44 |
43
|
adantr |
|
| 45 |
|
cnima |
|
| 46 |
45
|
ad2ant2r |
|
| 47 |
|
cnima |
|
| 48 |
47
|
ad2ant2l |
|
| 49 |
|
inopn |
|
| 50 |
44 46 48 49
|
syl3anc |
|
| 51 |
41 50
|
eqeltrd |
|
| 52 |
51
|
ralrimivva |
|
| 53 |
|
vex |
|
| 54 |
|
vex |
|
| 55 |
53 54
|
xpex |
|
| 56 |
55
|
rgen2w |
|
| 57 |
|
eqid |
|
| 58 |
|
imaeq2 |
|
| 59 |
58
|
eleq1d |
|
| 60 |
57 59
|
ralrnmpo |
|
| 61 |
56 60
|
ax-mp |
|
| 62 |
52 61
|
sylibr |
|
| 63 |
1
|
toptopon |
|
| 64 |
43 63
|
sylib |
|
| 65 |
|
cntop2 |
|
| 66 |
|
cntop2 |
|
| 67 |
|
eqid |
|
| 68 |
67
|
txval |
|
| 69 |
65 66 68
|
syl2an |
|
| 70 |
|
toptopon2 |
|
| 71 |
65 70
|
sylib |
|
| 72 |
|
toptopon2 |
|
| 73 |
66 72
|
sylib |
|
| 74 |
|
txtopon |
|
| 75 |
71 73 74
|
syl2an |
|
| 76 |
64 69 75
|
tgcn |
|
| 77 |
12 62 76
|
mpbir2and |
|