Step |
Hyp |
Ref |
Expression |
1 |
|
txcnmpt.1 |
|
2 |
|
txcnmpt.2 |
|
3 |
|
eqid |
|
4 |
1 3
|
cnf |
|
5 |
4
|
adantr |
|
6 |
5
|
ffvelrnda |
|
7 |
|
eqid |
|
8 |
1 7
|
cnf |
|
9 |
8
|
adantl |
|
10 |
9
|
ffvelrnda |
|
11 |
6 10
|
opelxpd |
|
12 |
11 2
|
fmptd |
|
13 |
2
|
mptpreima |
|
14 |
5
|
adantr |
|
15 |
14
|
adantr |
|
16 |
|
ffn |
|
17 |
|
elpreima |
|
18 |
15 16 17
|
3syl |
|
19 |
|
ibar |
|
20 |
19
|
adantl |
|
21 |
18 20
|
bitr4d |
|
22 |
9
|
ad2antrr |
|
23 |
|
ffn |
|
24 |
|
elpreima |
|
25 |
22 23 24
|
3syl |
|
26 |
|
ibar |
|
27 |
26
|
adantl |
|
28 |
25 27
|
bitr4d |
|
29 |
21 28
|
anbi12d |
|
30 |
|
elin |
|
31 |
|
opelxp |
|
32 |
29 30 31
|
3bitr4g |
|
33 |
32
|
rabbi2dva |
|
34 |
|
inss1 |
|
35 |
|
cnvimass |
|
36 |
34 35
|
sstri |
|
37 |
36 14
|
fssdm |
|
38 |
|
sseqin2 |
|
39 |
37 38
|
sylib |
|
40 |
33 39
|
eqtr3d |
|
41 |
13 40
|
eqtrid |
|
42 |
|
cntop1 |
|
43 |
42
|
adantl |
|
44 |
43
|
adantr |
|
45 |
|
cnima |
|
46 |
45
|
ad2ant2r |
|
47 |
|
cnima |
|
48 |
47
|
ad2ant2l |
|
49 |
|
inopn |
|
50 |
44 46 48 49
|
syl3anc |
|
51 |
41 50
|
eqeltrd |
|
52 |
51
|
ralrimivva |
|
53 |
|
vex |
|
54 |
|
vex |
|
55 |
53 54
|
xpex |
|
56 |
55
|
rgen2w |
|
57 |
|
eqid |
|
58 |
|
imaeq2 |
|
59 |
58
|
eleq1d |
|
60 |
57 59
|
ralrnmpo |
|
61 |
56 60
|
ax-mp |
|
62 |
52 61
|
sylibr |
|
63 |
1
|
toptopon |
|
64 |
43 63
|
sylib |
|
65 |
|
cntop2 |
|
66 |
|
cntop2 |
|
67 |
|
eqid |
|
68 |
67
|
txval |
|
69 |
65 66 68
|
syl2an |
|
70 |
|
toptopon2 |
|
71 |
65 70
|
sylib |
|
72 |
|
toptopon2 |
|
73 |
66 72
|
sylib |
|
74 |
|
txtopon |
|
75 |
71 73 74
|
syl2an |
|
76 |
64 69 75
|
tgcn |
|
77 |
12 62 76
|
mpbir2and |
|