Metamath Proof Explorer


Theorem tz7.49

Description: Proposition 7.49 of TakeutiZaring p. 51. (Contributed by NM, 10-Feb-1997) (Revised by Mario Carneiro, 10-Jan-2013)

Ref Expression
Hypotheses tz7.49.1 FFnOn
tz7.49.2 φxOnAFxFxAFx
Assertion tz7.49 ABφxOnyxAFyFx=AFunFx-1

Proof

Step Hyp Ref Expression
1 tz7.49.1 FFnOn
2 tz7.49.2 φxOnAFxFxAFx
3 df-ne AFx¬AFx=
4 3 ralbii xOnAFxxOn¬AFx=
5 ralim xOnAFxFxAFxxOnAFxxOnFxAFx
6 2 5 sylbi φxOnAFxxOnFxAFx
7 4 6 biimtrrid φxOn¬AFx=xOnFxAFx
8 1 tz7.48-3 xOnFxAFx¬AV
9 elex ABAV
10 8 9 nsyl3 AB¬xOnFxAFx
11 7 10 nsyli φAB¬xOn¬AFx=
12 dfrex2 xOnAFx=¬xOn¬AFx=
13 11 12 syl6ibr φABxOnAFx=
14 imaeq2 x=yFx=Fy
15 14 difeq2d x=yAFx=AFy
16 15 eqeq1d x=yAFx=AFy=
17 16 onminex xOnAFx=xOnAFx=yx¬AFy=
18 13 17 syl6 φABxOnAFx=yx¬AFy=
19 df-ne AFy¬AFy=
20 19 ralbii yxAFyyx¬AFy=
21 20 anbi2i AFx=yxAFyAFx=yx¬AFy=
22 21 rexbii xOnAFx=yxAFyxOnAFx=yx¬AFy=
23 18 22 syl6ibr φABxOnAFx=yxAFy
24 nfra1 xxOnAFxFxAFx
25 2 24 nfxfr xφ
26 simpllr φyxAFyxOnAFx=yxAFy
27 fnfun FFnOnFunF
28 1 27 ax-mp FunF
29 fvelima FunFzFxyxFy=z
30 28 29 mpan zFxyxFy=z
31 nfv yφ
32 nfra1 yyxAFy
33 31 32 nfan yφyxAFy
34 nfv yxOnzA
35 rsp yxAFyyxAFy
36 35 adantld yxAFyxOnyxAFy
37 onelon xOnyxyOn
38 15 neeq1d x=yAFxAFy
39 fveq2 x=yFx=Fy
40 39 15 eleq12d x=yFxAFxFyAFy
41 38 40 imbi12d x=yAFxFxAFxAFyFyAFy
42 41 rspcv yOnxOnAFxFxAFxAFyFyAFy
43 2 42 biimtrid yOnφAFyFyAFy
44 43 com23 yOnAFyφFyAFy
45 37 44 syl xOnyxAFyφFyAFy
46 36 45 sylcom yxAFyxOnyxφFyAFy
47 46 com3r φyxAFyxOnyxFyAFy
48 47 imp φyxAFyxOnyxFyAFy
49 48 expcomd φyxAFyyxxOnFyAFy
50 eldifi FyAFyFyA
51 eleq1 Fy=zFyAzA
52 50 51 syl5ibcom FyAFyFy=zzA
53 49 52 syl8 φyxAFyyxxOnFy=zzA
54 53 com34 φyxAFyyxFy=zxOnzA
55 33 34 54 rexlimd φyxAFyyxFy=zxOnzA
56 30 55 syl5 φyxAFyzFxxOnzA
57 56 com23 φyxAFyxOnzFxzA
58 57 imp φyxAFyxOnzFxzA
59 58 ssrdv φyxAFyxOnFxA
60 ssdif0 AFxAFx=
61 60 biimpri AFx=AFx
62 59 61 anim12i φyxAFyxOnAFx=FxAAFx
63 eqss Fx=AFxAAFx
64 62 63 sylibr φyxAFyxOnAFx=Fx=A
65 onss xOnxOn
66 32 31 nfan yyxAFyφ
67 nfv yxOn
68 66 67 nfan yyxAFyφxOn
69 nfv zyxAFyφxOnyx
70 ssel xOnyxyOn
71 onss yOnyOn
72 1 fndmi domF=On
73 71 72 sseqtrrdi yOnydomF
74 funfvima2 FunFydomFzyFzFy
75 28 73 74 sylancr yOnzyFzFy
76 70 75 syl6 xOnyxzyFzFy
77 35 com12 yxyxAFyAFy
78 77 a1i xOnyxyxAFyAFy
79 70 78 44 syl10 xOnyxyxAFyφFyAFy
80 79 imp4a xOnyxyxAFyφFyAFy
81 eldifn FyAFy¬FyFy
82 eleq1a FzFyFy=FzFyFy
83 82 con3d FzFy¬FyFy¬Fy=Fz
84 81 83 syl5com FyAFyFzFy¬Fy=Fz
85 80 84 syl8 xOnyxyxAFyφFzFy¬Fy=Fz
86 85 com34 xOnyxFzFyyxAFyφ¬Fy=Fz
87 76 86 syldd xOnyxzyyxAFyφ¬Fy=Fz
88 87 com4r yxAFyφxOnyxzy¬Fy=Fz
89 88 imp31 yxAFyφxOnyxzy¬Fy=Fz
90 69 89 ralrimi yxAFyφxOnyxzy¬Fy=Fz
91 90 ex yxAFyφxOnyxzy¬Fy=Fz
92 68 91 ralrimi yxAFyφxOnyxzy¬Fy=Fz
93 92 ex yxAFyφxOnyxzy¬Fy=Fz
94 93 ancld yxAFyφxOnxOnyxzy¬Fy=Fz
95 1 tz7.48lem xOnyxzy¬Fy=FzFunFx-1
96 65 94 95 syl56 yxAFyφxOnFunFx-1
97 96 ancoms φyxAFyxOnFunFx-1
98 97 imp φyxAFyxOnFunFx-1
99 98 adantr φyxAFyxOnAFx=FunFx-1
100 26 64 99 3jca φyxAFyxOnAFx=yxAFyFx=AFunFx-1
101 100 exp41 φyxAFyxOnAFx=yxAFyFx=AFunFx-1
102 101 com23 φxOnyxAFyAFx=yxAFyFx=AFunFx-1
103 102 com34 φxOnAFx=yxAFyyxAFyFx=AFunFx-1
104 103 imp4a φxOnAFx=yxAFyyxAFyFx=AFunFx-1
105 25 104 reximdai φxOnAFx=yxAFyxOnyxAFyFx=AFunFx-1
106 23 105 syld φABxOnyxAFyFx=AFunFx-1
107 106 impcom ABφxOnyxAFyFx=AFunFx-1