Metamath Proof Explorer


Theorem tz9.12lem3

Description: Lemma for tz9.12 . (Contributed by NM, 22-Sep-2003) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses tz9.12lem.1 AV
tz9.12lem.2 F=zVvOn|zR1v
Assertion tz9.12lem3 xAyOnxR1yAR1sucsucFA

Proof

Step Hyp Ref Expression
1 tz9.12lem.1 AV
2 tz9.12lem.2 F=zVvOn|zR1v
3 2 funmpt2 FunF
4 fveq2 v=yR1v=R1y
5 4 eleq2d v=yxR1vxR1y
6 5 rspcev yOnxR1yvOnxR1v
7 rabn0 vOn|xR1vvOnxR1v
8 6 7 sylibr yOnxR1yvOn|xR1v
9 intex vOn|xR1vvOn|xR1vV
10 8 9 sylib yOnxR1yvOn|xR1vV
11 vex xV
12 eleq1w z=xzR1vxR1v
13 12 rabbidv z=xvOn|zR1v=vOn|xR1v
14 13 inteqd z=xvOn|zR1v=vOn|xR1v
15 14 eleq1d z=xvOn|zR1vVvOn|xR1vV
16 2 dmmpt domF=zV|vOn|zR1vV
17 15 16 elrab2 xdomFxVvOn|xR1vV
18 11 17 mpbiran xdomFvOn|xR1vV
19 10 18 sylibr yOnxR1yxdomF
20 funfvima FunFxdomFxAFxFA
21 3 19 20 sylancr yOnxR1yxAFxFA
22 1 2 tz9.12lem2 sucFAOn
23 1 2 tz9.12lem1 FAOn
24 onsucuni FAOnFAsucFA
25 23 24 ax-mp FAsucFA
26 25 sseli FxFAFxsucFA
27 r1ord2 sucFAOnFxsucFAR1FxR1sucFA
28 22 26 27 mpsyl FxFAR1FxR1sucFA
29 21 28 syl6 yOnxR1yxAR1FxR1sucFA
30 29 imp yOnxR1yxAR1FxR1sucFA
31 14 2 fvmptg xVvOn|xR1vVFx=vOn|xR1v
32 11 31 mpan vOn|xR1vVFx=vOn|xR1v
33 9 32 sylbi vOn|xR1vFx=vOn|xR1v
34 ssrab2 vOn|xR1vOn
35 onint vOn|xR1vOnvOn|xR1vvOn|xR1vvOn|xR1v
36 34 35 mpan vOn|xR1vvOn|xR1vvOn|xR1v
37 33 36 eqeltrd vOn|xR1vFxvOn|xR1v
38 fveq2 y=FxR1y=R1Fx
39 38 eleq2d y=FxxR1yxR1Fx
40 5 cbvrabv vOn|xR1v=yOn|xR1y
41 39 40 elrab2 FxvOn|xR1vFxOnxR1Fx
42 41 simprbi FxvOn|xR1vxR1Fx
43 8 37 42 3syl yOnxR1yxR1Fx
44 43 adantr yOnxR1yxAxR1Fx
45 30 44 sseldd yOnxR1yxAxR1sucFA
46 45 exp31 yOnxR1yxAxR1sucFA
47 46 com3r xAyOnxR1yxR1sucFA
48 47 rexlimdv xAyOnxR1yxR1sucFA
49 48 ralimia xAyOnxR1yxAxR1sucFA
50 r1suc sucFAOnR1sucsucFA=𝒫R1sucFA
51 22 50 ax-mp R1sucsucFA=𝒫R1sucFA
52 51 eleq2i AR1sucsucFAA𝒫R1sucFA
53 1 elpw A𝒫R1sucFAAR1sucFA
54 dfss3 AR1sucFAxAxR1sucFA
55 52 53 54 3bitri AR1sucsucFAxAxR1sucFA
56 49 55 sylibr xAyOnxR1yAR1sucsucFA