| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unxpdomlem1.1 |
|
| 2 |
|
unxpdomlem1.2 |
|
| 3 |
|
1sdom |
|
| 4 |
3
|
elv |
|
| 5 |
|
1sdom |
|
| 6 |
5
|
elv |
|
| 7 |
|
reeanv |
|
| 8 |
|
reeanv |
|
| 9 |
|
vex |
|
| 10 |
|
vex |
|
| 11 |
9 10
|
unex |
|
| 12 |
9 10
|
xpex |
|
| 13 |
|
simpr |
|
| 14 |
|
simp2r |
|
| 15 |
|
simp1r |
|
| 16 |
14 15
|
ifcld |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
13 17
|
opelxpd |
|
| 19 |
|
simp2l |
|
| 20 |
|
simp1l |
|
| 21 |
19 20
|
ifcld |
|
| 22 |
21
|
ad2antrr |
|
| 23 |
|
simpr |
|
| 24 |
|
elun |
|
| 25 |
23 24
|
sylib |
|
| 26 |
25
|
orcanai |
|
| 27 |
22 26
|
opelxpd |
|
| 28 |
18 27
|
ifclda |
|
| 29 |
2 28
|
eqeltrid |
|
| 30 |
29 1
|
fmptd |
|
| 31 |
1 2
|
unxpdomlem1 |
|
| 32 |
31
|
ad2antrl |
|
| 33 |
|
iftrue |
|
| 34 |
33
|
adantr |
|
| 35 |
32 34
|
sylan9eq |
|
| 36 |
1 2
|
unxpdomlem1 |
|
| 37 |
36
|
ad2antll |
|
| 38 |
|
iftrue |
|
| 39 |
38
|
adantl |
|
| 40 |
37 39
|
sylan9eq |
|
| 41 |
35 40
|
eqeq12d |
|
| 42 |
|
vex |
|
| 43 |
|
vex |
|
| 44 |
|
vex |
|
| 45 |
43 44
|
ifex |
|
| 46 |
42 45
|
opth1 |
|
| 47 |
41 46
|
biimtrdi |
|
| 48 |
|
simprr |
|
| 49 |
|
simpll |
|
| 50 |
|
simplr |
|
| 51 |
1 2 48 49 50
|
unxpdomlem2 |
|
| 52 |
51
|
pm2.21d |
|
| 53 |
|
eqcom |
|
| 54 |
|
simprl |
|
| 55 |
1 2 54 49 50
|
unxpdomlem2 |
|
| 56 |
55
|
ancom2s |
|
| 57 |
56
|
pm2.21d |
|
| 58 |
53 57
|
biimtrid |
|
| 59 |
|
iffalse |
|
| 60 |
59
|
adantr |
|
| 61 |
32 60
|
sylan9eq |
|
| 62 |
|
iffalse |
|
| 63 |
62
|
adantl |
|
| 64 |
37 63
|
sylan9eq |
|
| 65 |
61 64
|
eqeq12d |
|
| 66 |
|
vex |
|
| 67 |
|
vex |
|
| 68 |
66 67
|
ifex |
|
| 69 |
68 42
|
opth |
|
| 70 |
69
|
simprbi |
|
| 71 |
65 70
|
biimtrdi |
|
| 72 |
47 52 58 71
|
4casesdan |
|
| 73 |
72
|
ralrimivva |
|
| 74 |
73
|
3ad2ant3 |
|
| 75 |
|
dff13 |
|
| 76 |
30 74 75
|
sylanbrc |
|
| 77 |
|
f1dom2g |
|
| 78 |
11 12 76 77
|
mp3an12i |
|
| 79 |
78
|
3expia |
|
| 80 |
79
|
rexlimdvva |
|
| 81 |
8 80
|
biimtrrid |
|
| 82 |
81
|
rexlimivv |
|
| 83 |
7 82
|
sylbir |
|
| 84 |
4 6 83
|
syl2anb |
|