Metamath Proof Explorer


Theorem uspgrn2crct

Description: In a simple pseudograph there are no circuits with length 2 (consisting of two edges). (Contributed by Alexander van der Vekens, 9-Nov-2017) (Revised by AV, 3-Feb-2021) (Proof shortened by AV, 31-Oct-2021)

Ref Expression
Assertion uspgrn2crct GUSHGraphFCircuitsGPF2

Proof

Step Hyp Ref Expression
1 crctprop FCircuitsGPFTrailsGPP0=PF
2 istrl FTrailsGPFWalksGPFunF-1
3 uspgrupgr GUSHGraphGUPGraph
4 eqid VtxG=VtxG
5 eqid iEdgG=iEdgG
6 4 5 upgriswlk GUPGraphFWalksGPFWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1
7 preq2 P2=P0P1P2=P1P0
8 prcom P1P0=P0P1
9 7 8 eqtrdi P2=P0P1P2=P0P1
10 9 eqcoms P0=P2P1P2=P0P1
11 10 eqeq2d P0=P2iEdgGF1=P1P2iEdgGF1=P0P1
12 11 anbi2d P0=P2iEdgGF0=P0P1iEdgGF1=P1P2iEdgGF0=P0P1iEdgGF1=P0P1
13 12 ad2antrr P0=P2F=2FunF-1GUSHGraphFWorddomiEdgGiEdgGF0=P0P1iEdgGF1=P1P2iEdgGF0=P0P1iEdgGF1=P0P1
14 eqtr3 iEdgGF0=P0P1iEdgGF1=P0P1iEdgGF0=iEdgGF1
15 4 5 uspgrf GUSHGraphiEdgG:domiEdgG1-1x𝒫VtxG|x2
16 15 adantl FunF-1GUSHGraphiEdgG:domiEdgG1-1x𝒫VtxG|x2
17 16 adantl F=2FunF-1GUSHGraphiEdgG:domiEdgG1-1x𝒫VtxG|x2
18 17 adantr F=2FunF-1GUSHGraphFWorddomiEdgGiEdgG:domiEdgG1-1x𝒫VtxG|x2
19 df-f1 F:0..^F1-1domiEdgGF:0..^FdomiEdgGFunF-1
20 19 simplbi2 F:0..^FdomiEdgGFunF-1F:0..^F1-1domiEdgG
21 wrdf FWorddomiEdgGF:0..^FdomiEdgG
22 20 21 syl11 FunF-1FWorddomiEdgGF:0..^F1-1domiEdgG
23 22 adantr FunF-1GUSHGraphFWorddomiEdgGF:0..^F1-1domiEdgG
24 23 adantl F=2FunF-1GUSHGraphFWorddomiEdgGF:0..^F1-1domiEdgG
25 24 imp F=2FunF-1GUSHGraphFWorddomiEdgGF:0..^F1-1domiEdgG
26 2nn 2
27 lbfzo0 00..^22
28 26 27 mpbir 00..^2
29 1nn0 10
30 1lt2 1<2
31 elfzo0 10..^21021<2
32 29 26 30 31 mpbir3an 10..^2
33 28 32 pm3.2i 00..^210..^2
34 oveq2 F=20..^F=0..^2
35 34 eleq2d F=200..^F00..^2
36 34 eleq2d F=210..^F10..^2
37 35 36 anbi12d F=200..^F10..^F00..^210..^2
38 33 37 mpbiri F=200..^F10..^F
39 38 ad2antrr F=2FunF-1GUSHGraphFWorddomiEdgG00..^F10..^F
40 f1cofveqaeq iEdgG:domiEdgG1-1x𝒫VtxG|x2F:0..^F1-1domiEdgG00..^F10..^FiEdgGF0=iEdgGF10=1
41 18 25 39 40 syl21anc F=2FunF-1GUSHGraphFWorddomiEdgGiEdgGF0=iEdgGF10=1
42 0ne1 01
43 eqneqall 0=101P0P2
44 41 42 43 syl6mpi F=2FunF-1GUSHGraphFWorddomiEdgGiEdgGF0=iEdgGF1P0P2
45 44 adantll P0=P2F=2FunF-1GUSHGraphFWorddomiEdgGiEdgGF0=iEdgGF1P0P2
46 14 45 syl5 P0=P2F=2FunF-1GUSHGraphFWorddomiEdgGiEdgGF0=P0P1iEdgGF1=P0P1P0P2
47 13 46 sylbid P0=P2F=2FunF-1GUSHGraphFWorddomiEdgGiEdgGF0=P0P1iEdgGF1=P1P2P0P2
48 47 expimpd P0=P2F=2FunF-1GUSHGraphFWorddomiEdgGiEdgGF0=P0P1iEdgGF1=P1P2P0P2
49 48 ex P0=P2F=2FunF-1GUSHGraphFWorddomiEdgGiEdgGF0=P0P1iEdgGF1=P1P2P0P2
50 2a1 P0P2F=2FunF-1GUSHGraphFWorddomiEdgGiEdgGF0=P0P1iEdgGF1=P1P2P0P2
51 49 50 pm2.61ine F=2FunF-1GUSHGraphFWorddomiEdgGiEdgGF0=P0P1iEdgGF1=P1P2P0P2
52 fzo0to2pr 0..^2=01
53 34 52 eqtrdi F=20..^F=01
54 53 raleqdv F=2k0..^FiEdgGFk=PkPk+1k01iEdgGFk=PkPk+1
55 2wlklem k01iEdgGFk=PkPk+1iEdgGF0=P0P1iEdgGF1=P1P2
56 54 55 bitrdi F=2k0..^FiEdgGFk=PkPk+1iEdgGF0=P0P1iEdgGF1=P1P2
57 56 anbi2d F=2FWorddomiEdgGk0..^FiEdgGFk=PkPk+1FWorddomiEdgGiEdgGF0=P0P1iEdgGF1=P1P2
58 fveq2 F=2PF=P2
59 58 neeq2d F=2P0PFP0P2
60 57 59 imbi12d F=2FWorddomiEdgGk0..^FiEdgGFk=PkPk+1P0PFFWorddomiEdgGiEdgGF0=P0P1iEdgGF1=P1P2P0P2
61 60 adantr F=2FunF-1GUSHGraphFWorddomiEdgGk0..^FiEdgGFk=PkPk+1P0PFFWorddomiEdgGiEdgGF0=P0P1iEdgGF1=P1P2P0P2
62 51 61 mpbird F=2FunF-1GUSHGraphFWorddomiEdgGk0..^FiEdgGFk=PkPk+1P0PF
63 62 ex F=2FunF-1GUSHGraphFWorddomiEdgGk0..^FiEdgGFk=PkPk+1P0PF
64 63 com13 FWorddomiEdgGk0..^FiEdgGFk=PkPk+1FunF-1GUSHGraphF=2P0PF
65 64 expd FWorddomiEdgGk0..^FiEdgGFk=PkPk+1FunF-1GUSHGraphF=2P0PF
66 65 3adant2 FWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1FunF-1GUSHGraphF=2P0PF
67 6 66 syl6bi GUPGraphFWalksGPFunF-1GUSHGraphF=2P0PF
68 67 impd GUPGraphFWalksGPFunF-1GUSHGraphF=2P0PF
69 68 com23 GUPGraphGUSHGraphFWalksGPFunF-1F=2P0PF
70 3 69 mpcom GUSHGraphFWalksGPFunF-1F=2P0PF
71 70 com12 FWalksGPFunF-1GUSHGraphF=2P0PF
72 2 71 sylbi FTrailsGPGUSHGraphF=2P0PF
73 72 imp FTrailsGPGUSHGraphF=2P0PF
74 73 necon2d FTrailsGPGUSHGraphP0=PFF2
75 74 impancom FTrailsGPP0=PFGUSHGraphF2
76 1 75 syl FCircuitsGPGUSHGraphF2
77 76 impcom GUSHGraphFCircuitsGPF2