Metamath Proof Explorer


Theorem uzwo3

Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 allows the lower bound B to be any real number. See also nnwo and nnwos . (Contributed by NM, 12-Nov-2004) (Proof shortened by Mario Carneiro, 2-Oct-2015) (Proof shortened by AV, 27-Sep-2020)

Ref Expression
Assertion uzwo3 BAz|BzA∃!xAyAxy

Proof

Step Hyp Ref Expression
1 renegcl BB
2 1 adantr BAz|BzAB
3 arch BnB<n
4 2 3 syl BAz|BzAnB<n
5 simplrl BAz|BzAnB<nAz|Bz
6 simplrl BnB<nzBzn
7 nnnegz nn
8 6 7 syl BnB<nzBzn
9 8 zred BnB<nzBzn
10 simprl BnB<nzBzz
11 10 zred BnB<nzBzz
12 simpll BnB<nzBzB
13 6 nnred BnB<nzBzn
14 simplrr BnB<nzBzB<n
15 12 13 14 ltnegcon1d BnB<nzBzn<B
16 simprr BnB<nzBzBz
17 9 12 11 15 16 ltletrd BnB<nzBzn<z
18 9 11 17 ltled BnB<nzBznz
19 eluz nzznnz
20 8 10 19 syl2anc BnB<nzBzznnz
21 18 20 mpbird BnB<nzBzzn
22 21 expr BnB<nzBzzn
23 22 ralrimiva BnB<nzBzzn
24 rabss z|BznzBzzn
25 23 24 sylibr BnB<nz|Bzn
26 25 adantlr BAz|BzAnB<nz|Bzn
27 5 26 sstrd BAz|BzAnB<nAn
28 simplrr BAz|BzAnB<nA
29 infssuzcl AnAsupA<A
30 27 28 29 syl2anc BAz|BzAnB<nsupA<A
31 infssuzle AnyAsupA<y
32 27 31 sylan BAz|BzAnB<nyAsupA<y
33 32 ralrimiva BAz|BzAnB<nyAsupA<y
34 breq2 y=supA<xyxsupA<
35 simprr BAz|BzAnB<nxAyAxyyAxy
36 30 adantr BAz|BzAnB<nxAyAxysupA<A
37 34 35 36 rspcdva BAz|BzAnB<nxAyAxyxsupA<
38 27 adantr BAz|BzAnB<nxAyAxyAn
39 simprl BAz|BzAnB<nxAyAxyxA
40 infssuzle AnxAsupA<x
41 38 39 40 syl2anc BAz|BzAnB<nxAyAxysupA<x
42 uzssz n
43 zssre
44 42 43 sstri n
45 27 44 sstrdi BAz|BzAnB<nA
46 45 adantr BAz|BzAnB<nxAyAxyA
47 46 39 sseldd BAz|BzAnB<nxAyAxyx
48 45 30 sseldd BAz|BzAnB<nsupA<
49 48 adantr BAz|BzAnB<nxAyAxysupA<
50 47 49 letri3d BAz|BzAnB<nxAyAxyx=supA<xsupA<supA<x
51 37 41 50 mpbir2and BAz|BzAnB<nxAyAxyx=supA<
52 51 expr BAz|BzAnB<nxAyAxyx=supA<
53 52 ralrimiva BAz|BzAnB<nxAyAxyx=supA<
54 breq1 x=supA<xysupA<y
55 54 ralbidv x=supA<yAxyyAsupA<y
56 55 eqreu supA<AyAsupA<yxAyAxyx=supA<∃!xAyAxy
57 30 33 53 56 syl3anc BAz|BzAnB<n∃!xAyAxy
58 4 57 rexlimddv BAz|BzA∃!xAyAxy