Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 allows the lower bound B to be any real number. See also nnwo and nnwos . (Contributed by NM, 12-Nov-2004) (Proof shortened by Mario Carneiro, 2-Oct-2015) (Proof shortened by AV, 27-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | uzwo3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl | |
|
2 | 1 | adantr | |
3 | arch | |
|
4 | 2 3 | syl | |
5 | simplrl | |
|
6 | simplrl | |
|
7 | nnnegz | |
|
8 | 6 7 | syl | |
9 | 8 | zred | |
10 | simprl | |
|
11 | 10 | zred | |
12 | simpll | |
|
13 | 6 | nnred | |
14 | simplrr | |
|
15 | 12 13 14 | ltnegcon1d | |
16 | simprr | |
|
17 | 9 12 11 15 16 | ltletrd | |
18 | 9 11 17 | ltled | |
19 | eluz | |
|
20 | 8 10 19 | syl2anc | |
21 | 18 20 | mpbird | |
22 | 21 | expr | |
23 | 22 | ralrimiva | |
24 | rabss | |
|
25 | 23 24 | sylibr | |
26 | 25 | adantlr | |
27 | 5 26 | sstrd | |
28 | simplrr | |
|
29 | infssuzcl | |
|
30 | 27 28 29 | syl2anc | |
31 | infssuzle | |
|
32 | 27 31 | sylan | |
33 | 32 | ralrimiva | |
34 | breq2 | |
|
35 | simprr | |
|
36 | 30 | adantr | |
37 | 34 35 36 | rspcdva | |
38 | 27 | adantr | |
39 | simprl | |
|
40 | infssuzle | |
|
41 | 38 39 40 | syl2anc | |
42 | uzssz | |
|
43 | zssre | |
|
44 | 42 43 | sstri | |
45 | 27 44 | sstrdi | |
46 | 45 | adantr | |
47 | 46 39 | sseldd | |
48 | 45 30 | sseldd | |
49 | 48 | adantr | |
50 | 47 49 | letri3d | |
51 | 37 41 50 | mpbir2and | |
52 | 51 | expr | |
53 | 52 | ralrimiva | |
54 | breq1 | |
|
55 | 54 | ralbidv | |
56 | 55 | eqreu | |
57 | 30 33 53 56 | syl3anc | |
58 | 4 57 | rexlimddv | |