| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl |
|
| 2 |
1
|
adantr |
|
| 3 |
|
arch |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
simplrl |
|
| 6 |
|
simplrl |
|
| 7 |
|
nnnegz |
|
| 8 |
6 7
|
syl |
|
| 9 |
8
|
zred |
|
| 10 |
|
simprl |
|
| 11 |
10
|
zred |
|
| 12 |
|
simpll |
|
| 13 |
6
|
nnred |
|
| 14 |
|
simplrr |
|
| 15 |
12 13 14
|
ltnegcon1d |
|
| 16 |
|
simprr |
|
| 17 |
9 12 11 15 16
|
ltletrd |
|
| 18 |
9 11 17
|
ltled |
|
| 19 |
|
eluz |
|
| 20 |
8 10 19
|
syl2anc |
|
| 21 |
18 20
|
mpbird |
|
| 22 |
21
|
expr |
|
| 23 |
22
|
ralrimiva |
|
| 24 |
|
rabss |
|
| 25 |
23 24
|
sylibr |
|
| 26 |
25
|
adantlr |
|
| 27 |
5 26
|
sstrd |
|
| 28 |
|
simplrr |
|
| 29 |
|
infssuzcl |
|
| 30 |
27 28 29
|
syl2anc |
|
| 31 |
|
infssuzle |
|
| 32 |
27 31
|
sylan |
|
| 33 |
32
|
ralrimiva |
|
| 34 |
|
breq2 |
|
| 35 |
|
simprr |
|
| 36 |
30
|
adantr |
|
| 37 |
34 35 36
|
rspcdva |
|
| 38 |
27
|
adantr |
|
| 39 |
|
simprl |
|
| 40 |
|
infssuzle |
|
| 41 |
38 39 40
|
syl2anc |
|
| 42 |
|
uzssz |
|
| 43 |
|
zssre |
|
| 44 |
42 43
|
sstri |
|
| 45 |
27 44
|
sstrdi |
|
| 46 |
45
|
adantr |
|
| 47 |
46 39
|
sseldd |
|
| 48 |
45 30
|
sseldd |
|
| 49 |
48
|
adantr |
|
| 50 |
47 49
|
letri3d |
|
| 51 |
37 41 50
|
mpbir2and |
|
| 52 |
51
|
expr |
|
| 53 |
52
|
ralrimiva |
|
| 54 |
|
breq1 |
|
| 55 |
54
|
ralbidv |
|
| 56 |
55
|
eqreu |
|
| 57 |
30 33 53 56
|
syl3anc |
|
| 58 |
4 57
|
rexlimddv |
|