Metamath Proof Explorer


Theorem vmadivsumb

Description: Give a total bound on the von Mangoldt sum. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion vmadivsumb c+x1+∞n=1xΛnnlogxc

Proof

Step Hyp Ref Expression
1 1re 1
2 elicopnf 1x1+∞x1x
3 1 2 mp1i x1+∞x1x
4 3 simprbda x1+∞x
5 1rp 1+
6 5 a1i x1+∞1+
7 3 simplbda x1+∞1x
8 4 6 7 rpgecld x1+∞x+
9 8 ex x1+∞x+
10 9 ssrdv 1+∞+
11 rpssre +
12 10 11 sstrdi 1+∞
13 1 a1i 1
14 fzfid x1+∞1xFin
15 elfznn n1xn
16 15 adantl x1+∞n1xn
17 vmacl nΛn
18 16 17 syl x1+∞n1xΛn
19 18 16 nndivred x1+∞n1xΛnn
20 14 19 fsumrecl x1+∞n=1xΛnn
21 8 relogcld x1+∞logx
22 20 21 resubcld x1+∞n=1xΛnnlogx
23 22 recnd x1+∞n=1xΛnnlogx
24 vmadivsum x+n=1xΛnnlogx𝑂1
25 24 a1i x+n=1xΛnnlogx𝑂1
26 10 25 o1res2 x1+∞n=1xΛnnlogx𝑂1
27 fzfid y1y1yFin
28 elfznn n1yn
29 28 adantl y1yn1yn
30 29 17 syl y1yn1yΛn
31 30 29 nndivred y1yn1yΛnn
32 27 31 fsumrecl y1yn=1yΛnn
33 simprl y1yy
34 5 a1i y1y1+
35 simprr y1y1y
36 33 34 35 rpgecld y1yy+
37 36 relogcld y1ylogy
38 32 37 readdcld y1yn=1yΛnn+logy
39 22 adantr x1+∞y1yx<yn=1xΛnnlogx
40 39 recnd x1+∞y1yx<yn=1xΛnnlogx
41 40 abscld x1+∞y1yx<yn=1xΛnnlogx
42 20 adantr x1+∞y1yx<yn=1xΛnn
43 8 adantr x1+∞y1yx<yx+
44 43 relogcld x1+∞y1yx<ylogx
45 42 44 readdcld x1+∞y1yx<yn=1xΛnn+logx
46 38 ad2ant2r x1+∞y1yx<yn=1yΛnn+logy
47 42 recnd x1+∞y1yx<yn=1xΛnn
48 44 recnd x1+∞y1yx<ylogx
49 47 48 abs2dif2d x1+∞y1yx<yn=1xΛnnlogxn=1xΛnn+logx
50 16 nnrpd x1+∞n1xn+
51 vmage0 n0Λn
52 16 51 syl x1+∞n1x0Λn
53 18 50 52 divge0d x1+∞n1x0Λnn
54 14 19 53 fsumge0 x1+∞0n=1xΛnn
55 54 adantr x1+∞y1yx<y0n=1xΛnn
56 42 55 absidd x1+∞y1yx<yn=1xΛnn=n=1xΛnn
57 21 adantr x1+∞y1yx<ylogx
58 4 adantr x1+∞y1yx<yx
59 7 adantr x1+∞y1yx<y1x
60 58 59 logge0d x1+∞y1yx<y0logx
61 57 60 absidd x1+∞y1yx<ylogx=logx
62 56 61 oveq12d x1+∞y1yx<yn=1xΛnn+logx=n=1xΛnn+logx
63 49 62 breqtrd x1+∞y1yx<yn=1xΛnnlogxn=1xΛnn+logx
64 32 ad2ant2r x1+∞y1yx<yn=1yΛnn
65 36 ad2ant2r x1+∞y1yx<yy+
66 65 relogcld x1+∞y1yx<ylogy
67 fzfid x1+∞y1yx<y1yFin
68 28 adantl x1+∞y1yx<yn1yn
69 68 17 syl x1+∞y1yx<yn1yΛn
70 69 68 nndivred x1+∞y1yx<yn1yΛnn
71 68 nnrpd x1+∞y1yx<yn1yn+
72 68 51 syl x1+∞y1yx<yn1y0Λn
73 69 71 72 divge0d x1+∞y1yx<yn1y0Λnn
74 simprll x1+∞y1yx<yy
75 simprr x1+∞y1yx<yx<y
76 58 74 75 ltled x1+∞y1yx<yxy
77 flword2 xyxyyx
78 58 74 76 77 syl3anc x1+∞y1yx<yyx
79 fzss2 yx1x1y
80 78 79 syl x1+∞y1yx<y1x1y
81 67 70 73 80 fsumless x1+∞y1yx<yn=1xΛnnn=1yΛnn
82 74 43 76 rpgecld x1+∞y1yx<yy+
83 43 82 logled x1+∞y1yx<yxylogxlogy
84 76 83 mpbid x1+∞y1yx<ylogxlogy
85 42 44 64 66 81 84 le2addd x1+∞y1yx<yn=1xΛnn+logxn=1yΛnn+logy
86 41 45 46 63 85 letrd x1+∞y1yx<yn=1xΛnnlogxn=1yΛnn+logy
87 12 13 23 26 38 86 o1bddrp c+x1+∞n=1xΛnnlogxc
88 87 mptru c+x1+∞n=1xΛnnlogxc