Metamath Proof Explorer


Theorem vonsn

Description: The n-dimensional Lebesgue measure of a singleton is zero. This is the first statement in Proposition 115G (e) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonsn.1 φXFin
vonsn.2 φAX
Assertion vonsn φvolnXA=0

Proof

Step Hyp Ref Expression
1 vonsn.1 φXFin
2 vonsn.2 φAX
3 fveq2 X=volnX=voln
4 3 fveq1d X=volnXA=volnA
5 4 adantl φX=volnXA=volnA
6 0fin Fin
7 6 a1i φX=Fin
8 2 adantr φX=AX
9 oveq2 X=X=
10 9 adantl φX=X=
11 8 10 eleqtrd φX=A
12 7 11 snvonmbl φX=Adomvoln
13 12 von0val φX=volnA=0
14 5 13 eqtrd φX=volnXA=0
15 neqne ¬X=X
16 15 adantl φ¬X=X
17 2 rrxsnicc φkXAkAk=A
18 17 eqcomd φA=kXAkAk
19 18 fveq2d φvolnXA=volnXkXAkAk
20 19 adantr φXvolnXA=volnXkXAkAk
21 1 adantr φXXFin
22 simpr φXX
23 elmapi AXA:X
24 2 23 syl φA:X
25 24 adantr φXA:X
26 eqid kXAkAk=kXAkAk
27 21 22 25 25 26 vonn0icc φXvolnXkXAkAk=kXvolAkAk
28 24 ffvelcdmda φkXAk
29 28 rexrd φkXAk*
30 iccid Ak*AkAk=Ak
31 29 30 syl φkXAkAk=Ak
32 31 fveq2d φkXvolAkAk=volAk
33 volsn AkvolAk=0
34 28 33 syl φkXvolAk=0
35 32 34 eqtrd φkXvolAkAk=0
36 35 prodeq2dv φkXvolAkAk=kX0
37 36 adantr φXkXvolAkAk=kX0
38 0cnd φ0
39 fprodconst XFin0kX0=0X
40 1 38 39 syl2anc φkX0=0X
41 40 adantr φXkX0=0X
42 hashnncl XFinXX
43 1 42 syl φXX
44 43 adantr φXXX
45 22 44 mpbird φXX
46 0exp X0X=0
47 45 46 syl φX0X=0
48 37 41 47 3eqtrd φXkXvolAkAk=0
49 20 27 48 3eqtrd φXvolnXA=0
50 16 49 syldan φ¬X=volnXA=0
51 14 50 pm2.61dan φvolnXA=0