Description: The n-dimensional Lebesgue measure of a singleton is zero. This is the first statement in Proposition 115G (e) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vonsn.1 | |
|
vonsn.2 | |
||
Assertion | vonsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonsn.1 | |
|
2 | vonsn.2 | |
|
3 | fveq2 | |
|
4 | 3 | fveq1d | |
5 | 4 | adantl | |
6 | 0fin | |
|
7 | 6 | a1i | |
8 | 2 | adantr | |
9 | oveq2 | |
|
10 | 9 | adantl | |
11 | 8 10 | eleqtrd | |
12 | 7 11 | snvonmbl | |
13 | 12 | von0val | |
14 | 5 13 | eqtrd | |
15 | neqne | |
|
16 | 15 | adantl | |
17 | 2 | rrxsnicc | |
18 | 17 | eqcomd | |
19 | 18 | fveq2d | |
20 | 19 | adantr | |
21 | 1 | adantr | |
22 | simpr | |
|
23 | elmapi | |
|
24 | 2 23 | syl | |
25 | 24 | adantr | |
26 | eqid | |
|
27 | 21 22 25 25 26 | vonn0icc | |
28 | 24 | ffvelcdmda | |
29 | 28 | rexrd | |
30 | iccid | |
|
31 | 29 30 | syl | |
32 | 31 | fveq2d | |
33 | volsn | |
|
34 | 28 33 | syl | |
35 | 32 34 | eqtrd | |
36 | 35 | prodeq2dv | |
37 | 36 | adantr | |
38 | 0cnd | |
|
39 | fprodconst | |
|
40 | 1 38 39 | syl2anc | |
41 | 40 | adantr | |
42 | hashnncl | |
|
43 | 1 42 | syl | |
44 | 43 | adantr | |
45 | 22 44 | mpbird | |
46 | 0exp | |
|
47 | 45 46 | syl | |
48 | 37 41 47 | 3eqtrd | |
49 | 20 27 48 | 3eqtrd | |
50 | 16 49 | syldan | |
51 | 14 50 | pm2.61dan | |