| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wdom2d.a |
|
| 2 |
|
wdom2d.b |
|
| 3 |
|
wdom2d.o |
|
| 4 |
|
rabexg |
|
| 5 |
2 4
|
syl |
|
| 6 |
5 1
|
xpexd |
|
| 7 |
|
csbeq1 |
|
| 8 |
7
|
eleq1d |
|
| 9 |
8
|
elrab |
|
| 10 |
9
|
simprbi |
|
| 11 |
10
|
adantl |
|
| 12 |
11
|
fmpttd |
|
| 13 |
|
fssxp |
|
| 14 |
12 13
|
syl |
|
| 15 |
6 14
|
ssexd |
|
| 16 |
|
eleq1 |
|
| 17 |
16
|
biimpcd |
|
| 18 |
17
|
ancrd |
|
| 19 |
18
|
adantl |
|
| 20 |
19
|
reximdv |
|
| 21 |
3 20
|
mpd |
|
| 22 |
|
nfv |
|
| 23 |
|
nfcsb1v |
|
| 24 |
23
|
nfel1 |
|
| 25 |
23
|
nfeq2 |
|
| 26 |
24 25
|
nfan |
|
| 27 |
|
csbeq1a |
|
| 28 |
27
|
eleq1d |
|
| 29 |
27
|
eqeq2d |
|
| 30 |
28 29
|
anbi12d |
|
| 31 |
22 26 30
|
cbvrexw |
|
| 32 |
21 31
|
sylib |
|
| 33 |
|
csbeq1 |
|
| 34 |
33
|
eleq1d |
|
| 35 |
34
|
elrab |
|
| 36 |
35
|
simprbi |
|
| 37 |
|
csbeq1 |
|
| 38 |
|
eqid |
|
| 39 |
37 38
|
fvmptg |
|
| 40 |
36 39
|
mpdan |
|
| 41 |
40
|
eqeq2d |
|
| 42 |
41
|
rexbiia |
|
| 43 |
34
|
rexrab |
|
| 44 |
42 43
|
bitri |
|
| 45 |
32 44
|
sylibr |
|
| 46 |
45
|
ralrimiva |
|
| 47 |
|
dffo3 |
|
| 48 |
12 46 47
|
sylanbrc |
|
| 49 |
|
fowdom |
|
| 50 |
15 48 49
|
syl2anc |
|
| 51 |
|
ssrab2 |
|
| 52 |
|
ssdomg |
|
| 53 |
51 52
|
mpi |
|
| 54 |
|
domwdom |
|
| 55 |
2 53 54
|
3syl |
|
| 56 |
|
wdomtr |
|
| 57 |
50 55 56
|
syl2anc |
|