Description: Deduce weak dominance from an implicit onto function (stated in a way which avoids ax-rep ). (Contributed by Stefan O'Rear, 13-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wdom2d.a | |
|
wdom2d.b | |
||
wdom2d.o | |
||
Assertion | wdom2d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wdom2d.a | |
|
2 | wdom2d.b | |
|
3 | wdom2d.o | |
|
4 | rabexg | |
|
5 | 2 4 | syl | |
6 | 5 1 | xpexd | |
7 | csbeq1 | |
|
8 | 7 | eleq1d | |
9 | 8 | elrab | |
10 | 9 | simprbi | |
11 | 10 | adantl | |
12 | 11 | fmpttd | |
13 | fssxp | |
|
14 | 12 13 | syl | |
15 | 6 14 | ssexd | |
16 | eleq1 | |
|
17 | 16 | biimpcd | |
18 | 17 | ancrd | |
19 | 18 | adantl | |
20 | 19 | reximdv | |
21 | 3 20 | mpd | |
22 | nfv | |
|
23 | nfcsb1v | |
|
24 | 23 | nfel1 | |
25 | 23 | nfeq2 | |
26 | 24 25 | nfan | |
27 | csbeq1a | |
|
28 | 27 | eleq1d | |
29 | 27 | eqeq2d | |
30 | 28 29 | anbi12d | |
31 | 22 26 30 | cbvrexw | |
32 | 21 31 | sylib | |
33 | csbeq1 | |
|
34 | 33 | eleq1d | |
35 | 34 | elrab | |
36 | 35 | simprbi | |
37 | csbeq1 | |
|
38 | eqid | |
|
39 | 37 38 | fvmptg | |
40 | 36 39 | mpdan | |
41 | 40 | eqeq2d | |
42 | 41 | rexbiia | |
43 | 34 | rexrab | |
44 | 42 43 | bitri | |
45 | 32 44 | sylibr | |
46 | 45 | ralrimiva | |
47 | dffo3 | |
|
48 | 12 46 47 | sylanbrc | |
49 | fowdom | |
|
50 | 15 48 49 | syl2anc | |
51 | ssrab2 | |
|
52 | ssdomg | |
|
53 | 51 52 | mpi | |
54 | domwdom | |
|
55 | 2 53 54 | 3syl | |
56 | wdomtr | |
|
57 | 50 55 56 | syl2anc | |