Metamath Proof Explorer


Theorem wdom2d

Description: Deduce weak dominance from an implicit onto function (stated in a way which avoids ax-rep ). (Contributed by Stefan O'Rear, 13-Feb-2015)

Ref Expression
Hypotheses wdom2d.a φAV
wdom2d.b φBW
wdom2d.o φxAyBx=X
Assertion wdom2d φA*B

Proof

Step Hyp Ref Expression
1 wdom2d.a φAV
2 wdom2d.b φBW
3 wdom2d.o φxAyBx=X
4 rabexg BWzB|z/yXAV
5 2 4 syl φzB|z/yXAV
6 5 1 xpexd φzB|z/yXA×AV
7 csbeq1 z=wz/yX=w/yX
8 7 eleq1d z=wz/yXAw/yXA
9 8 elrab wzB|z/yXAwBw/yXA
10 9 simprbi wzB|z/yXAw/yXA
11 10 adantl φwzB|z/yXAw/yXA
12 11 fmpttd φwzB|z/yXAw/yX:zB|z/yXAA
13 fssxp wzB|z/yXAw/yX:zB|z/yXAAwzB|z/yXAw/yXzB|z/yXA×A
14 12 13 syl φwzB|z/yXAw/yXzB|z/yXA×A
15 6 14 ssexd φwzB|z/yXAw/yXV
16 eleq1 x=XxAXA
17 16 biimpcd xAx=XXA
18 17 ancrd xAx=XXAx=X
19 18 adantl φxAx=XXAx=X
20 19 reximdv φxAyBx=XyBXAx=X
21 3 20 mpd φxAyBXAx=X
22 nfv vXAx=X
23 nfcsb1v _yv/yX
24 23 nfel1 yv/yXA
25 23 nfeq2 yx=v/yX
26 24 25 nfan yv/yXAx=v/yX
27 csbeq1a y=vX=v/yX
28 27 eleq1d y=vXAv/yXA
29 27 eqeq2d y=vx=Xx=v/yX
30 28 29 anbi12d y=vXAx=Xv/yXAx=v/yX
31 22 26 30 cbvrexw yBXAx=XvBv/yXAx=v/yX
32 21 31 sylib φxAvBv/yXAx=v/yX
33 csbeq1 z=vz/yX=v/yX
34 33 eleq1d z=vz/yXAv/yXA
35 34 elrab vzB|z/yXAvBv/yXA
36 35 simprbi vzB|z/yXAv/yXA
37 csbeq1 w=vw/yX=v/yX
38 eqid wzB|z/yXAw/yX=wzB|z/yXAw/yX
39 37 38 fvmptg vzB|z/yXAv/yXAwzB|z/yXAw/yXv=v/yX
40 36 39 mpdan vzB|z/yXAwzB|z/yXAw/yXv=v/yX
41 40 eqeq2d vzB|z/yXAx=wzB|z/yXAw/yXvx=v/yX
42 41 rexbiia vzB|z/yXAx=wzB|z/yXAw/yXvvzB|z/yXAx=v/yX
43 34 rexrab vzB|z/yXAx=v/yXvBv/yXAx=v/yX
44 42 43 bitri vzB|z/yXAx=wzB|z/yXAw/yXvvBv/yXAx=v/yX
45 32 44 sylibr φxAvzB|z/yXAx=wzB|z/yXAw/yXv
46 45 ralrimiva φxAvzB|z/yXAx=wzB|z/yXAw/yXv
47 dffo3 wzB|z/yXAw/yX:zB|z/yXAontoAwzB|z/yXAw/yX:zB|z/yXAAxAvzB|z/yXAx=wzB|z/yXAw/yXv
48 12 46 47 sylanbrc φwzB|z/yXAw/yX:zB|z/yXAontoA
49 fowdom wzB|z/yXAw/yXVwzB|z/yXAw/yX:zB|z/yXAontoAA*zB|z/yXA
50 15 48 49 syl2anc φA*zB|z/yXA
51 ssrab2 zB|z/yXAB
52 ssdomg BWzB|z/yXABzB|z/yXAB
53 51 52 mpi BWzB|z/yXAB
54 domwdom zB|z/yXABzB|z/yXA*B
55 2 53 54 3syl φzB|z/yXA*B
56 wdomtr A*zB|z/yXAzB|z/yXA*BA*B
57 50 55 56 syl2anc φA*B