| Step |
Hyp |
Ref |
Expression |
| 1 |
|
weiun.1 |
|
| 2 |
|
weiun.2 |
|
| 3 |
|
weiunlem2.3 |
|
| 4 |
|
weiunlem2.4 |
|
| 5 |
|
weiunfrlem.5 |
|
| 6 |
|
weiunfrlem.6 |
|
| 7 |
|
weiunfrlem.7 |
|
| 8 |
1 2 3 4
|
weiunlem2 |
|
| 9 |
8
|
simp1d |
|
| 10 |
9
|
fimassd |
|
| 11 |
9
|
fdmd |
|
| 12 |
6 11
|
sseqtrrd |
|
| 13 |
|
sseqin2 |
|
| 14 |
12 13
|
sylib |
|
| 15 |
14 7
|
eqnetrd |
|
| 16 |
15
|
imadisjlnd |
|
| 17 |
|
wereu2 |
|
| 18 |
3 4 10 16 17
|
syl22anc |
|
| 19 |
|
riotacl2 |
|
| 20 |
18 19
|
syl |
|
| 21 |
|
simpr |
|
| 22 |
|
simpl |
|
| 23 |
21 22
|
breq12d |
|
| 24 |
23
|
notbid |
|
| 25 |
24
|
cbvraldva |
|
| 26 |
25
|
cbvrabv |
|
| 27 |
20 5 26
|
3eltr4g |
|
| 28 |
|
breq2 |
|
| 29 |
28
|
notbid |
|
| 30 |
29
|
ralbidv |
|
| 31 |
30
|
elrab |
|
| 32 |
27 31
|
sylib |
|
| 33 |
32
|
simpld |
|
| 34 |
32
|
simprd |
|
| 35 |
9
|
ffnd |
|
| 36 |
|
breq1 |
|
| 37 |
36
|
notbid |
|
| 38 |
37
|
ralima |
|
| 39 |
35 6 38
|
syl2anc |
|
| 40 |
34 39
|
mpbid |
|
| 41 |
|
simpr |
|
| 42 |
41
|
elin1d |
|
| 43 |
|
rspa |
|
| 44 |
40 42 43
|
syl2an2r |
|
| 45 |
|
csbeq1 |
|
| 46 |
|
breq1 |
|
| 47 |
46
|
notbid |
|
| 48 |
45 47
|
raleqbidv |
|
| 49 |
8
|
simp3d |
|
| 50 |
10 33
|
sseldd |
|
| 51 |
48 49 50
|
rspcdva |
|
| 52 |
41
|
elin2d |
|
| 53 |
|
rspa |
|
| 54 |
51 52 53
|
syl2an2r |
|
| 55 |
|
weso |
|
| 56 |
3 55
|
syl |
|
| 57 |
56
|
adantr |
|
| 58 |
9
|
adantr |
|
| 59 |
6
|
adantr |
|
| 60 |
59 42
|
sseldd |
|
| 61 |
58 60
|
ffvelcdmd |
|
| 62 |
50
|
adantr |
|
| 63 |
|
sotrieq2 |
|
| 64 |
57 61 62 63
|
syl12anc |
|
| 65 |
44 54 64
|
mpbir2and |
|
| 66 |
65
|
ralrimiva |
|
| 67 |
33 40 66
|
3jca |
|