Metamath Proof Explorer


Theorem wfrlem4OLD

Description: Lemma for well-ordered recursion. Properties of the restriction of an acceptable function to the domain of another one. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011) (Revised by AV, 18-Jul-2022)

Ref Expression
Hypothesis wfrlem4OLD.2 B=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy
Assertion wfrlem4OLD gBhBgdomgdomhFndomgdomhadomgdomhgdomgdomha=FgdomgdomhPredRdomgdomha

Proof

Step Hyp Ref Expression
1 wfrlem4OLD.2 B=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy
2 1 wfrlem2OLD gBFung
3 2 funfnd gBgFndomg
4 fnresin1 gFndomggdomgdomhFndomgdomh
5 3 4 syl gBgdomgdomhFndomgdomh
6 5 adantr gBhBgdomgdomhFndomgdomh
7 1 wfrlem1OLD B=g|bgFnbbAabPredRAababga=FgPredRAa
8 7 eqabri gBbgFnbbAabPredRAababga=FgPredRAa
9 fndm gFnbdomg=b
10 9 raleqdv gFnbadomgga=FgPredRAaabga=FgPredRAa
11 10 biimpar gFnbabga=FgPredRAaadomgga=FgPredRAa
12 rsp adomgga=FgPredRAaadomgga=FgPredRAa
13 11 12 syl gFnbabga=FgPredRAaadomgga=FgPredRAa
14 13 3adant2 gFnbbAabPredRAababga=FgPredRAaadomgga=FgPredRAa
15 14 exlimiv bgFnbbAabPredRAababga=FgPredRAaadomgga=FgPredRAa
16 8 15 sylbi gBadomgga=FgPredRAa
17 elinel1 adomgdomhadomg
18 16 17 impel gBadomgdomhga=FgPredRAa
19 18 adantlr gBhBadomgdomhga=FgPredRAa
20 fvres adomgdomhgdomgdomha=ga
21 20 adantl gBhBadomgdomhgdomgdomha=ga
22 resres gdomgdomhPredRdomgdomha=gdomgdomhPredRdomgdomha
23 predss PredRdomgdomhadomgdomh
24 sseqin2 PredRdomgdomhadomgdomhdomgdomhPredRdomgdomha=PredRdomgdomha
25 23 24 mpbi domgdomhPredRdomgdomha=PredRdomgdomha
26 1 wfrlem1OLD B=h|chFnccAacPredRAacacha=FhPredRAa
27 26 eqabri hBchFnccAacPredRAacacha=FhPredRAa
28 3an6 gFnbhFncbAabPredRAabcAacPredRAacabga=FgPredRAaacha=FhPredRAagFnbbAabPredRAababga=FgPredRAahFnccAacPredRAacacha=FhPredRAa
29 28 2exbii bcgFnbhFncbAabPredRAabcAacPredRAacabga=FgPredRAaacha=FhPredRAabcgFnbbAabPredRAababga=FgPredRAahFnccAacPredRAacacha=FhPredRAa
30 exdistrv bcgFnbbAabPredRAababga=FgPredRAahFnccAacPredRAacacha=FhPredRAabgFnbbAabPredRAababga=FgPredRAachFnccAacPredRAacacha=FhPredRAa
31 29 30 bitri bcgFnbhFncbAabPredRAabcAacPredRAacabga=FgPredRAaacha=FhPredRAabgFnbbAabPredRAababga=FgPredRAachFnccAacPredRAacacha=FhPredRAa
32 ssinss1 bAbcA
33 32 ad2antrr bAabPredRAabcAacPredRAacbcA
34 nfra1 aabPredRAab
35 nfra1 aacPredRAac
36 34 35 nfan aabPredRAabacPredRAac
37 elinel1 abcab
38 rsp abPredRAababPredRAab
39 37 38 syl5com abcabPredRAabPredRAab
40 elinel2 abcac
41 rsp acPredRAacacPredRAac
42 40 41 syl5com abcacPredRAacPredRAac
43 39 42 anim12d abcabPredRAabacPredRAacPredRAabPredRAac
44 ssin PredRAabPredRAacPredRAabc
45 44 biimpi PredRAabPredRAacPredRAabc
46 43 45 syl6com abPredRAabacPredRAacabcPredRAabc
47 36 46 ralrimi abPredRAabacPredRAacabcPredRAabc
48 47 ad2ant2l bAabPredRAabcAacPredRAacabcPredRAabc
49 33 48 jca bAabPredRAabcAacPredRAacbcAabcPredRAabc
50 fndm hFncdomh=c
51 9 50 ineqan12d gFnbhFncdomgdomh=bc
52 sseq1 domgdomh=bcdomgdomhAbcA
53 sseq2 domgdomh=bcPredRAadomgdomhPredRAabc
54 53 raleqbi1dv domgdomh=bcadomgdomhPredRAadomgdomhabcPredRAabc
55 52 54 anbi12d domgdomh=bcdomgdomhAadomgdomhPredRAadomgdomhbcAabcPredRAabc
56 55 imbi2d domgdomh=bcbAabPredRAabcAacPredRAacdomgdomhAadomgdomhPredRAadomgdomhbAabPredRAabcAacPredRAacbcAabcPredRAabc
57 51 56 syl gFnbhFncbAabPredRAabcAacPredRAacdomgdomhAadomgdomhPredRAadomgdomhbAabPredRAabcAacPredRAacbcAabcPredRAabc
58 49 57 mpbiri gFnbhFncbAabPredRAabcAacPredRAacdomgdomhAadomgdomhPredRAadomgdomh
59 58 imp gFnbhFncbAabPredRAabcAacPredRAacdomgdomhAadomgdomhPredRAadomgdomh
60 59 3adant3 gFnbhFncbAabPredRAabcAacPredRAacabga=FgPredRAaacha=FhPredRAadomgdomhAadomgdomhPredRAadomgdomh
61 60 exlimivv bcgFnbhFncbAabPredRAabcAacPredRAacabga=FgPredRAaacha=FhPredRAadomgdomhAadomgdomhPredRAadomgdomh
62 31 61 sylbir bgFnbbAabPredRAababga=FgPredRAachFnccAacPredRAacacha=FhPredRAadomgdomhAadomgdomhPredRAadomgdomh
63 8 27 62 syl2anb gBhBdomgdomhAadomgdomhPredRAadomgdomh
64 63 adantr gBhBadomgdomhdomgdomhAadomgdomhPredRAadomgdomh
65 simpr gBhBadomgdomhadomgdomh
66 preddowncl domgdomhAadomgdomhPredRAadomgdomhadomgdomhPredRdomgdomha=PredRAa
67 64 65 66 sylc gBhBadomgdomhPredRdomgdomha=PredRAa
68 25 67 eqtrid gBhBadomgdomhdomgdomhPredRdomgdomha=PredRAa
69 68 reseq2d gBhBadomgdomhgdomgdomhPredRdomgdomha=gPredRAa
70 22 69 eqtrid gBhBadomgdomhgdomgdomhPredRdomgdomha=gPredRAa
71 70 fveq2d gBhBadomgdomhFgdomgdomhPredRdomgdomha=FgPredRAa
72 19 21 71 3eqtr4d gBhBadomgdomhgdomgdomha=FgdomgdomhPredRdomgdomha
73 72 ralrimiva gBhBadomgdomhgdomgdomha=FgdomgdomhPredRdomgdomha
74 6 73 jca gBhBgdomgdomhFndomgdomhadomgdomhgdomgdomha=FgdomgdomhPredRdomgdomha