Description: Generalize lebnum to extended metrics. (Contributed by Mario Carneiro, 5-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xlebnum.j | |
|
xlebnum.d | |
||
xlebnum.c | |
||
xlebnum.s | |
||
xlebnum.u | |
||
Assertion | xlebnum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlebnum.j | |
|
2 | xlebnum.d | |
|
3 | xlebnum.c | |
|
4 | xlebnum.s | |
|
5 | xlebnum.u | |
|
6 | eqid | |
|
7 | 1rp | |
|
8 | eqid | |
|
9 | 8 | stdbdmet | |
10 | 2 7 9 | sylancl | |
11 | rpxr | |
|
12 | 7 11 | mp1i | |
13 | 0lt1 | |
|
14 | 13 | a1i | |
15 | 8 1 | stdbdmopn | |
16 | 2 12 14 15 | syl3anc | |
17 | 16 3 | eqeltrrd | |
18 | 4 16 | sseqtrd | |
19 | 6 10 17 18 5 | lebnum | |
20 | simpr | |
|
21 | ifcl | |
|
22 | 20 7 21 | sylancl | |
23 | 2 | ad2antrr | |
24 | 7 11 | mp1i | |
25 | 13 | a1i | |
26 | simpr | |
|
27 | 22 | adantr | |
28 | rpxr | |
|
29 | 27 28 | syl | |
30 | rpre | |
|
31 | 30 | ad2antlr | |
32 | 1re | |
|
33 | min2 | |
|
34 | 31 32 33 | sylancl | |
35 | 8 | stdbdbl | |
36 | 23 24 25 26 29 34 35 | syl33anc | |
37 | 10 | ad2antrr | |
38 | metxmet | |
|
39 | 37 38 | syl | |
40 | rpxr | |
|
41 | 40 | ad2antlr | |
42 | min1 | |
|
43 | 31 32 42 | sylancl | |
44 | ssbl | |
|
45 | 39 26 29 41 43 44 | syl221anc | |
46 | 36 45 | eqsstrrd | |
47 | sstr2 | |
|
48 | 46 47 | syl | |
49 | 48 | reximdv | |
50 | 49 | ralimdva | |
51 | oveq2 | |
|
52 | 51 | sseq1d | |
53 | 52 | rexbidv | |
54 | 53 | ralbidv | |
55 | 54 | rspcev | |
56 | 22 50 55 | syl6an | |
57 | 56 | rexlimdva | |
58 | 19 57 | mpd | |