Metamath Proof Explorer


Theorem xlebnum

Description: Generalize lebnum to extended metrics. (Contributed by Mario Carneiro, 5-Sep-2015)

Ref Expression
Hypotheses xlebnum.j J=MetOpenD
xlebnum.d φD∞MetX
xlebnum.c φJComp
xlebnum.s φUJ
xlebnum.u φX=U
Assertion xlebnum φd+xXuUxballDdu

Proof

Step Hyp Ref Expression
1 xlebnum.j J=MetOpenD
2 xlebnum.d φD∞MetX
3 xlebnum.c φJComp
4 xlebnum.s φUJ
5 xlebnum.u φX=U
6 eqid MetOpenyX,zXifyDz1yDz1=MetOpenyX,zXifyDz1yDz1
7 1rp 1+
8 eqid yX,zXifyDz1yDz1=yX,zXifyDz1yDz1
9 8 stdbdmet D∞MetX1+yX,zXifyDz1yDz1MetX
10 2 7 9 sylancl φyX,zXifyDz1yDz1MetX
11 rpxr 1+1*
12 7 11 mp1i φ1*
13 0lt1 0<1
14 13 a1i φ0<1
15 8 1 stdbdmopn D∞MetX1*0<1J=MetOpenyX,zXifyDz1yDz1
16 2 12 14 15 syl3anc φJ=MetOpenyX,zXifyDz1yDz1
17 16 3 eqeltrrd φMetOpenyX,zXifyDz1yDz1Comp
18 4 16 sseqtrd φUMetOpenyX,zXifyDz1yDz1
19 6 10 17 18 5 lebnum φr+xXuUxballyX,zXifyDz1yDz1ru
20 simpr φr+r+
21 ifcl r+1+ifr1r1+
22 20 7 21 sylancl φr+ifr1r1+
23 2 ad2antrr φr+xXD∞MetX
24 7 11 mp1i φr+xX1*
25 13 a1i φr+xX0<1
26 simpr φr+xXxX
27 22 adantr φr+xXifr1r1+
28 rpxr ifr1r1+ifr1r1*
29 27 28 syl φr+xXifr1r1*
30 rpre r+r
31 30 ad2antlr φr+xXr
32 1re 1
33 min2 r1ifr1r11
34 31 32 33 sylancl φr+xXifr1r11
35 8 stdbdbl D∞MetX1*0<1xXifr1r1*ifr1r11xballyX,zXifyDz1yDz1ifr1r1=xballDifr1r1
36 23 24 25 26 29 34 35 syl33anc φr+xXxballyX,zXifyDz1yDz1ifr1r1=xballDifr1r1
37 10 ad2antrr φr+xXyX,zXifyDz1yDz1MetX
38 metxmet yX,zXifyDz1yDz1MetXyX,zXifyDz1yDz1∞MetX
39 37 38 syl φr+xXyX,zXifyDz1yDz1∞MetX
40 rpxr r+r*
41 40 ad2antlr φr+xXr*
42 min1 r1ifr1r1r
43 31 32 42 sylancl φr+xXifr1r1r
44 ssbl yX,zXifyDz1yDz1∞MetXxXifr1r1*r*ifr1r1rxballyX,zXifyDz1yDz1ifr1r1xballyX,zXifyDz1yDz1r
45 39 26 29 41 43 44 syl221anc φr+xXxballyX,zXifyDz1yDz1ifr1r1xballyX,zXifyDz1yDz1r
46 36 45 eqsstrrd φr+xXxballDifr1r1xballyX,zXifyDz1yDz1r
47 sstr2 xballDifr1r1xballyX,zXifyDz1yDz1rxballyX,zXifyDz1yDz1ruxballDifr1r1u
48 46 47 syl φr+xXxballyX,zXifyDz1yDz1ruxballDifr1r1u
49 48 reximdv φr+xXuUxballyX,zXifyDz1yDz1ruuUxballDifr1r1u
50 49 ralimdva φr+xXuUxballyX,zXifyDz1yDz1ruxXuUxballDifr1r1u
51 oveq2 d=ifr1r1xballDd=xballDifr1r1
52 51 sseq1d d=ifr1r1xballDduxballDifr1r1u
53 52 rexbidv d=ifr1r1uUxballDduuUxballDifr1r1u
54 53 ralbidv d=ifr1r1xXuUxballDduxXuUxballDifr1r1u
55 54 rspcev ifr1r1+xXuUxballDifr1r1ud+xXuUxballDdu
56 22 50 55 syl6an φr+xXuUxballyX,zXifyDz1yDz1rud+xXuUxballDdu
57 56 rexlimdva φr+xXuUxballyX,zXifyDz1yDz1rud+xXuUxballDdu
58 19 57 mpd φd+xXuUxballDdu