| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xlebnum.j |
|
| 2 |
|
xlebnum.d |
|
| 3 |
|
xlebnum.c |
|
| 4 |
|
xlebnum.s |
|
| 5 |
|
xlebnum.u |
|
| 6 |
|
eqid |
|
| 7 |
|
1rp |
|
| 8 |
|
eqid |
|
| 9 |
8
|
stdbdmet |
|
| 10 |
2 7 9
|
sylancl |
|
| 11 |
|
rpxr |
|
| 12 |
7 11
|
mp1i |
|
| 13 |
|
0lt1 |
|
| 14 |
13
|
a1i |
|
| 15 |
8 1
|
stdbdmopn |
|
| 16 |
2 12 14 15
|
syl3anc |
|
| 17 |
16 3
|
eqeltrrd |
|
| 18 |
4 16
|
sseqtrd |
|
| 19 |
6 10 17 18 5
|
lebnum |
|
| 20 |
|
simpr |
|
| 21 |
|
ifcl |
|
| 22 |
20 7 21
|
sylancl |
|
| 23 |
2
|
ad2antrr |
|
| 24 |
7 11
|
mp1i |
|
| 25 |
13
|
a1i |
|
| 26 |
|
simpr |
|
| 27 |
22
|
adantr |
|
| 28 |
|
rpxr |
|
| 29 |
27 28
|
syl |
|
| 30 |
|
rpre |
|
| 31 |
30
|
ad2antlr |
|
| 32 |
|
1re |
|
| 33 |
|
min2 |
|
| 34 |
31 32 33
|
sylancl |
|
| 35 |
8
|
stdbdbl |
|
| 36 |
23 24 25 26 29 34 35
|
syl33anc |
|
| 37 |
10
|
ad2antrr |
|
| 38 |
|
metxmet |
|
| 39 |
37 38
|
syl |
|
| 40 |
|
rpxr |
|
| 41 |
40
|
ad2antlr |
|
| 42 |
|
min1 |
|
| 43 |
31 32 42
|
sylancl |
|
| 44 |
|
ssbl |
|
| 45 |
39 26 29 41 43 44
|
syl221anc |
|
| 46 |
36 45
|
eqsstrrd |
|
| 47 |
|
sstr2 |
|
| 48 |
46 47
|
syl |
|
| 49 |
48
|
reximdv |
|
| 50 |
49
|
ralimdva |
|
| 51 |
|
oveq2 |
|
| 52 |
51
|
sseq1d |
|
| 53 |
52
|
rexbidv |
|
| 54 |
53
|
ralbidv |
|
| 55 |
54
|
rspcev |
|
| 56 |
22 50 55
|
syl6an |
|
| 57 |
56
|
rexlimdva |
|
| 58 |
19 57
|
mpd |
|