Metamath Proof Explorer


Theorem xlimmnfv

Description: A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimmnfv.m φM
xlimmnfv.z Z=M
xlimmnfv.f φF:Z*
Assertion xlimmnfv φF*−∞xjZkjFkx

Proof

Step Hyp Ref Expression
1 xlimmnfv.m φM
2 xlimmnfv.z Z=M
3 xlimmnfv.f φF:Z*
4 1 ad2antrr φF*−∞xM
5 3 ad2antrr φF*−∞xF:Z*
6 simplr φF*−∞xF*−∞
7 simpr φF*−∞xx
8 4 2 5 6 7 xlimmnfvlem1 φF*−∞xjZkjFkx
9 8 ralrimiva φF*−∞xjZkjFkx
10 nfv kφ
11 nfcv _k
12 nfcv _kZ
13 nfra1 kkjFkx
14 12 13 nfrexw kjZkjFkx
15 11 14 nfralw kxjZkjFkx
16 10 15 nfan kφxjZkjFkx
17 nfv jφ
18 nfcv _j
19 nfre1 jjZkjFkx
20 18 19 nfralw jxjZkjFkx
21 17 20 nfan jφxjZkjFkx
22 1 adantr φxjZkjFkxM
23 3 adantr φxjZkjFkxF:Z*
24 nfv jy
25 21 24 nfan jφxjZkjFkxy
26 3 3ad2ant1 φjZkjF:Z*
27 2 uztrn2 jZkjkZ
28 27 3adant1 φjZkjkZ
29 26 28 ffvelcdmd φjZkjFk*
30 29 ad5ant134 φyjZkjFky1Fk*
31 simp-4r φyjZkjFky1y
32 peano2rem yy1
33 32 rexrd yy1*
34 31 33 syl φyjZkjFky1y1*
35 rexr yy*
36 35 ad4antlr φyjZkjFky1y*
37 simpr φyjZkjFky1Fky1
38 31 ltm1d φyjZkjFky1y1<y
39 30 34 36 37 38 xrlelttrd φyjZkjFky1Fk<y
40 39 ex φyjZkjFky1Fk<y
41 40 ralimdva φyjZkjFky1kjFk<y
42 41 imp φyjZkjFky1kjFk<y
43 42 adantl3r φxjZkjFkxyjZkjFky1kjFk<y
44 43 3impa φxjZkjFkxyjZkjFky1kjFk<y
45 32 adantl xjZkjFkxyy1
46 simpl xjZkjFkxyxjZkjFkx
47 breq2 x=y1FkxFky1
48 47 ralbidv x=y1kjFkxkjFky1
49 48 rexbidv x=y1jZkjFkxjZkjFky1
50 49 rspcva y1xjZkjFkxjZkjFky1
51 45 46 50 syl2anc xjZkjFkxyjZkjFky1
52 51 adantll φxjZkjFkxyjZkjFky1
53 25 44 52 reximdd φxjZkjFkxyjZkjFk<y
54 53 ralrimiva φxjZkjFkxyjZkjFk<y
55 16 21 22 2 23 54 xlimmnfvlem2 φxjZkjFkxF*−∞
56 9 55 impbida φF*−∞xjZkjFkx