Metamath Proof Explorer


Theorem xpsle

Description: Value of the ordering in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypotheses xpsle.t T=R×𝑠S
xpsle.x X=BaseR
xpsle.y Y=BaseS
xpsle.1 φRV
xpsle.2 φSW
xpsle.p ˙=T
xpsle.m M=R
xpsle.n N=S
xpsle.3 φAX
xpsle.4 φBY
xpsle.5 φCX
xpsle.6 φDY
Assertion xpsle φAB˙CDAMCBND

Proof

Step Hyp Ref Expression
1 xpsle.t T=R×𝑠S
2 xpsle.x X=BaseR
3 xpsle.y Y=BaseS
4 xpsle.1 φRV
5 xpsle.2 φSW
6 xpsle.p ˙=T
7 xpsle.m M=R
8 xpsle.n N=S
9 xpsle.3 φAX
10 xpsle.4 φBY
11 xpsle.5 φCX
12 xpsle.6 φDY
13 df-ov AxX,yYx1𝑜yB=xX,yYx1𝑜yAB
14 eqid xX,yYx1𝑜y=xX,yYx1𝑜y
15 14 xpsfval AXBYAxX,yYx1𝑜yB=A1𝑜B
16 9 10 15 syl2anc φAxX,yYx1𝑜yB=A1𝑜B
17 13 16 eqtr3id φxX,yYx1𝑜yAB=A1𝑜B
18 9 10 opelxpd φABX×Y
19 14 xpsff1o2 xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜y
20 f1of xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜yxX,yYx1𝑜y:X×YranxX,yYx1𝑜y
21 19 20 ax-mp xX,yYx1𝑜y:X×YranxX,yYx1𝑜y
22 21 ffvelcdmi ABX×YxX,yYx1𝑜yABranxX,yYx1𝑜y
23 18 22 syl φxX,yYx1𝑜yABranxX,yYx1𝑜y
24 17 23 eqeltrrd φA1𝑜BranxX,yYx1𝑜y
25 df-ov CxX,yYx1𝑜yD=xX,yYx1𝑜yCD
26 14 xpsfval CXDYCxX,yYx1𝑜yD=C1𝑜D
27 11 12 26 syl2anc φCxX,yYx1𝑜yD=C1𝑜D
28 25 27 eqtr3id φxX,yYx1𝑜yCD=C1𝑜D
29 11 12 opelxpd φCDX×Y
30 21 ffvelcdmi CDX×YxX,yYx1𝑜yCDranxX,yYx1𝑜y
31 29 30 syl φxX,yYx1𝑜yCDranxX,yYx1𝑜y
32 28 31 eqeltrrd φC1𝑜DranxX,yYx1𝑜y
33 eqid ScalarR=ScalarR
34 eqid ScalarR𝑠R1𝑜S=ScalarR𝑠R1𝑜S
35 1 2 3 4 5 14 33 34 xpsval φT=xX,yYx1𝑜y-1𝑠ScalarR𝑠R1𝑜S
36 1 2 3 4 5 14 33 34 xpsrnbas φranxX,yYx1𝑜y=BaseScalarR𝑠R1𝑜S
37 f1ocnv xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜yxX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×Y
38 19 37 mp1i φxX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×Y
39 f1ofo xX,yYx1𝑜y-1:ranxX,yYx1𝑜y1-1 ontoX×YxX,yYx1𝑜y-1:ranxX,yYx1𝑜yontoX×Y
40 38 39 syl φxX,yYx1𝑜y-1:ranxX,yYx1𝑜yontoX×Y
41 ovexd φScalarR𝑠R1𝑜SV
42 eqid ScalarR𝑠R1𝑜S=ScalarR𝑠R1𝑜S
43 38 f1olecpbl φaranxX,yYx1𝑜ybranxX,yYx1𝑜ycranxX,yYx1𝑜ydranxX,yYx1𝑜yxX,yYx1𝑜y-1a=xX,yYx1𝑜y-1cxX,yYx1𝑜y-1b=xX,yYx1𝑜y-1daScalarR𝑠R1𝑜SbcScalarR𝑠R1𝑜Sd
44 35 36 40 41 6 42 43 imasleval φA1𝑜BranxX,yYx1𝑜yC1𝑜DranxX,yYx1𝑜yxX,yYx1𝑜y-1A1𝑜B˙xX,yYx1𝑜y-1C1𝑜DA1𝑜BScalarR𝑠R1𝑜SC1𝑜D
45 24 32 44 mpd3an23 φxX,yYx1𝑜y-1A1𝑜B˙xX,yYx1𝑜y-1C1𝑜DA1𝑜BScalarR𝑠R1𝑜SC1𝑜D
46 f1ocnvfv xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜yABX×YxX,yYx1𝑜yAB=A1𝑜BxX,yYx1𝑜y-1A1𝑜B=AB
47 19 18 46 sylancr φxX,yYx1𝑜yAB=A1𝑜BxX,yYx1𝑜y-1A1𝑜B=AB
48 17 47 mpd φxX,yYx1𝑜y-1A1𝑜B=AB
49 f1ocnvfv xX,yYx1𝑜y:X×Y1-1 ontoranxX,yYx1𝑜yCDX×YxX,yYx1𝑜yCD=C1𝑜DxX,yYx1𝑜y-1C1𝑜D=CD
50 19 29 49 sylancr φxX,yYx1𝑜yCD=C1𝑜DxX,yYx1𝑜y-1C1𝑜D=CD
51 28 50 mpd φxX,yYx1𝑜y-1C1𝑜D=CD
52 48 51 breq12d φxX,yYx1𝑜y-1A1𝑜B˙xX,yYx1𝑜y-1C1𝑜DAB˙CD
53 eqid BaseScalarR𝑠R1𝑜S=BaseScalarR𝑠R1𝑜S
54 fvexd φScalarRV
55 2on 2𝑜On
56 55 a1i φ2𝑜On
57 fnpr2o RVSWR1𝑜SFn2𝑜
58 4 5 57 syl2anc φR1𝑜SFn2𝑜
59 24 36 eleqtrd φA1𝑜BBaseScalarR𝑠R1𝑜S
60 32 36 eleqtrd φC1𝑜DBaseScalarR𝑠R1𝑜S
61 34 53 54 56 58 59 60 42 prdsleval φA1𝑜BScalarR𝑠R1𝑜SC1𝑜Dk2𝑜A1𝑜BkR1𝑜SkC1𝑜Dk
62 df2o3 2𝑜=1𝑜
63 62 raleqi k2𝑜A1𝑜BkR1𝑜SkC1𝑜Dkk1𝑜A1𝑜BkR1𝑜SkC1𝑜Dk
64 0ex V
65 1oex 1𝑜V
66 fveq2 k=A1𝑜Bk=A1𝑜B
67 2fveq3 k=R1𝑜Sk=R1𝑜S
68 fveq2 k=C1𝑜Dk=C1𝑜D
69 66 67 68 breq123d k=A1𝑜BkR1𝑜SkC1𝑜DkA1𝑜BR1𝑜SC1𝑜D
70 fveq2 k=1𝑜A1𝑜Bk=A1𝑜B1𝑜
71 2fveq3 k=1𝑜R1𝑜Sk=R1𝑜S1𝑜
72 fveq2 k=1𝑜C1𝑜Dk=C1𝑜D1𝑜
73 70 71 72 breq123d k=1𝑜A1𝑜BkR1𝑜SkC1𝑜DkA1𝑜B1𝑜R1𝑜S1𝑜C1𝑜D1𝑜
74 64 65 69 73 ralpr k1𝑜A1𝑜BkR1𝑜SkC1𝑜DkA1𝑜BR1𝑜SC1𝑜DA1𝑜B1𝑜R1𝑜S1𝑜C1𝑜D1𝑜
75 63 74 bitri k2𝑜A1𝑜BkR1𝑜SkC1𝑜DkA1𝑜BR1𝑜SC1𝑜DA1𝑜B1𝑜R1𝑜S1𝑜C1𝑜D1𝑜
76 fvpr0o AXA1𝑜B=A
77 9 76 syl φA1𝑜B=A
78 fvpr0o RVR1𝑜S=R
79 4 78 syl φR1𝑜S=R
80 79 fveq2d φR1𝑜S=R
81 80 7 eqtr4di φR1𝑜S=M
82 fvpr0o CXC1𝑜D=C
83 11 82 syl φC1𝑜D=C
84 77 81 83 breq123d φA1𝑜BR1𝑜SC1𝑜DAMC
85 fvpr1o BYA1𝑜B1𝑜=B
86 10 85 syl φA1𝑜B1𝑜=B
87 fvpr1o SWR1𝑜S1𝑜=S
88 5 87 syl φR1𝑜S1𝑜=S
89 88 fveq2d φR1𝑜S1𝑜=S
90 89 8 eqtr4di φR1𝑜S1𝑜=N
91 fvpr1o DYC1𝑜D1𝑜=D
92 12 91 syl φC1𝑜D1𝑜=D
93 86 90 92 breq123d φA1𝑜B1𝑜R1𝑜S1𝑜C1𝑜D1𝑜BND
94 84 93 anbi12d φA1𝑜BR1𝑜SC1𝑜DA1𝑜B1𝑜R1𝑜S1𝑜C1𝑜D1𝑜AMCBND
95 75 94 bitrid φk2𝑜A1𝑜BkR1𝑜SkC1𝑜DkAMCBND
96 61 95 bitrd φA1𝑜BScalarR𝑠R1𝑜SC1𝑜DAMCBND
97 45 52 96 3bitr3d φAB˙CDAMCBND