Metamath Proof Explorer


Theorem xrge0iifmhm

Description: The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017)

Ref Expression
Hypotheses xrge0iifhmeo.1 F=x01ifx=0+∞logx
xrge0iifhmeo.k J=ordTop𝑡0+∞
Assertion xrge0iifmhm FmulGrpfld𝑠01MndHom𝑠*𝑠0+∞

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 F=x01ifx=0+∞logx
2 xrge0iifhmeo.k J=ordTop𝑡0+∞
3 eqid mulGrpfld𝑠01=mulGrpfld𝑠01
4 3 iistmd mulGrpfld𝑠01TopMnd
5 tmdmnd mulGrpfld𝑠01TopMndmulGrpfld𝑠01Mnd
6 4 5 ax-mp mulGrpfld𝑠01Mnd
7 xrge0cmn 𝑠*𝑠0+∞CMnd
8 cmnmnd 𝑠*𝑠0+∞CMnd𝑠*𝑠0+∞Mnd
9 7 8 ax-mp 𝑠*𝑠0+∞Mnd
10 6 9 pm3.2i mulGrpfld𝑠01Mnd𝑠*𝑠0+∞Mnd
11 1 xrge0iifcnv F:011-1 onto0+∞F-1=y0+∞ify=+∞0ey
12 11 simpli F:011-1 onto0+∞
13 f1of F:011-1 onto0+∞F:010+∞
14 12 13 ax-mp F:010+∞
15 1 2 xrge0iifhom y01z01Fyz=Fy+𝑒Fz
16 15 rgen2 y01z01Fyz=Fy+𝑒Fz
17 1 2 xrge0iif1 F1=0
18 14 16 17 3pm3.2i F:010+∞y01z01Fyz=Fy+𝑒FzF1=0
19 unitsscn 01
20 eqid mulGrpfld=mulGrpfld
21 cnfldbas =Basefld
22 20 21 mgpbas =BasemulGrpfld
23 3 22 ressbas2 0101=BasemulGrpfld𝑠01
24 19 23 ax-mp 01=BasemulGrpfld𝑠01
25 xrge0base 0+∞=Base𝑠*𝑠0+∞
26 cnfldex fldV
27 ovex 01V
28 eqid fld𝑠01=fld𝑠01
29 28 20 mgpress fldV01VmulGrpfld𝑠01=mulGrpfld𝑠01
30 26 27 29 mp2an mulGrpfld𝑠01=mulGrpfld𝑠01
31 cnfldmul ×=fld
32 28 31 ressmulr 01V×=fld𝑠01
33 27 32 ax-mp ×=fld𝑠01
34 30 33 mgpplusg ×=+mulGrpfld𝑠01
35 xrge0plusg +𝑒=+𝑠*𝑠0+∞
36 cnring fldRing
37 1elunit 101
38 cnfld1 1=1fld
39 3 21 38 ringidss fldRing011011=0mulGrpfld𝑠01
40 36 19 37 39 mp3an 1=0mulGrpfld𝑠01
41 xrge00 0=0𝑠*𝑠0+∞
42 24 25 34 35 40 41 ismhm FmulGrpfld𝑠01MndHom𝑠*𝑠0+∞mulGrpfld𝑠01Mnd𝑠*𝑠0+∞MndF:010+∞y01z01Fyz=Fy+𝑒FzF1=0
43 10 18 42 mpbir2an FmulGrpfld𝑠01MndHom𝑠*𝑠0+∞