Description: The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xrge0iifhmeo.1 | |
|
xrge0iifhmeo.k | |
||
Assertion | xrge0iifmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0iifhmeo.1 | |
|
2 | xrge0iifhmeo.k | |
|
3 | eqid | |
|
4 | 3 | iistmd | |
5 | tmdmnd | |
|
6 | 4 5 | ax-mp | |
7 | xrge0cmn | |
|
8 | cmnmnd | |
|
9 | 7 8 | ax-mp | |
10 | 6 9 | pm3.2i | |
11 | 1 | xrge0iifcnv | |
12 | 11 | simpli | |
13 | f1of | |
|
14 | 12 13 | ax-mp | |
15 | 1 2 | xrge0iifhom | |
16 | 15 | rgen2 | |
17 | 1 2 | xrge0iif1 | |
18 | 14 16 17 | 3pm3.2i | |
19 | unitsscn | |
|
20 | eqid | |
|
21 | cnfldbas | |
|
22 | 20 21 | mgpbas | |
23 | 3 22 | ressbas2 | |
24 | 19 23 | ax-mp | |
25 | xrge0base | |
|
26 | cnfldex | |
|
27 | ovex | |
|
28 | eqid | |
|
29 | 28 20 | mgpress | |
30 | 26 27 29 | mp2an | |
31 | cnfldmul | |
|
32 | 28 31 | ressmulr | |
33 | 27 32 | ax-mp | |
34 | 30 33 | mgpplusg | |
35 | xrge0plusg | |
|
36 | cnring | |
|
37 | 1elunit | |
|
38 | cnfld1 | |
|
39 | 3 21 38 | ringidss | |
40 | 36 19 37 39 | mp3an | |
41 | xrge00 | |
|
42 | 24 25 34 35 40 41 | ismhm | |
43 | 10 18 42 | mpbir2an | |