Metamath Proof Explorer


Theorem xrub

Description: By quantifying only over reals, we can specify any extended real upper bound for any set of extended reals. (Contributed by NM, 9-Apr-2006)

Ref Expression
Assertion xrub A*B*xx<ByAx<yx*x<ByAx<y

Proof

Step Hyp Ref Expression
1 breq1 x=zx<Bz<B
2 breq1 x=zx<yz<y
3 2 rexbidv x=zyAx<yyAz<y
4 1 3 imbi12d x=zx<ByAx<yz<ByAz<y
5 4 cbvralvw xx<ByAx<yzz<ByAz<y
6 elxr x*xx=+∞x=−∞
7 pm2.27 xxx<ByAx<yx<ByAx<y
8 7 a1i A*B*zz<ByAz<yxxx<ByAx<yx<ByAx<y
9 pnfnlt B*¬+∞<B
10 breq1 x=+∞x<B+∞<B
11 10 notbid x=+∞¬x<B¬+∞<B
12 9 11 imbitrrid x=+∞B*¬x<B
13 pm2.21 ¬x<Bx<ByAx<y
14 12 13 syl6com B*x=+∞x<ByAx<y
15 14 ad2antlr A*B*zz<ByAz<yx=+∞x<ByAx<y
16 15 a1dd A*B*zz<ByAz<yx=+∞xx<ByAx<yx<ByAx<y
17 elxr B*BB=+∞B=−∞
18 peano2rem BB1
19 breq1 z=B1z<BB1<B
20 breq1 z=B1z<yB1<y
21 20 rexbidv z=B1yAz<yyAB1<y
22 19 21 imbi12d z=B1z<ByAz<yB1<ByAB1<y
23 22 rspcv B1zz<ByAz<yB1<ByAB1<y
24 18 23 syl Bzz<ByAz<yB1<ByAB1<y
25 24 adantl A*Bzz<ByAz<yB1<ByAB1<y
26 ltm1 BB1<B
27 id B1<ByAB1<yB1<ByAB1<y
28 26 27 syl5com BB1<ByAB1<yyAB1<y
29 28 adantl A*BB1<ByAB1<yyAB1<y
30 18 ad2antlr A*ByAB1
31 mnflt B1−∞<B1
32 30 31 syl A*ByA−∞<B1
33 mnfxr −∞*
34 30 rexrd A*ByAB1*
35 ssel2 A*yAy*
36 35 adantlr A*ByAy*
37 xrlttr −∞*B1*y*−∞<B1B1<y−∞<y
38 33 34 36 37 mp3an2i A*ByA−∞<B1B1<y−∞<y
39 32 38 mpand A*ByAB1<y−∞<y
40 39 reximdva A*ByAB1<yyA−∞<y
41 25 29 40 3syld A*Bzz<ByAz<yyA−∞<y
42 41 a1dd A*Bzz<ByAz<y−∞<ByA−∞<y
43 1re 1
44 breq1 z=1z<B1<B
45 breq1 z=1z<y1<y
46 45 rexbidv z=1yAz<yyA1<y
47 44 46 imbi12d z=1z<ByAz<y1<ByA1<y
48 47 rspcv 1zz<ByAz<y1<ByA1<y
49 43 48 ax-mp zz<ByAz<y1<ByA1<y
50 ltpnf 11<+∞
51 43 50 ax-mp 1<+∞
52 breq2 B=+∞1<B1<+∞
53 51 52 mpbiri B=+∞1<B
54 id 1<ByA1<y1<ByA1<y
55 53 54 syl5com B=+∞1<ByA1<yyA1<y
56 mnflt 1−∞<1
57 43 56 ax-mp −∞<1
58 rexr 11*
59 43 58 ax-mp 1*
60 xrlttr −∞*1*y*−∞<11<y−∞<y
61 33 59 60 mp3an12 y*−∞<11<y−∞<y
62 57 61 mpani y*1<y−∞<y
63 35 62 syl A*yA1<y−∞<y
64 63 reximdva A*yA1<yyA−∞<y
65 55 64 sylan9r A*B=+∞1<ByA1<yyA−∞<y
66 49 65 syl5 A*B=+∞zz<ByAz<yyA−∞<y
67 66 a1dd A*B=+∞zz<ByAz<y−∞<ByA−∞<y
68 xrltnr −∞*¬−∞<−∞
69 33 68 ax-mp ¬−∞<−∞
70 breq2 B=−∞−∞<B−∞<−∞
71 69 70 mtbiri B=−∞¬−∞<B
72 71 adantl A*B=−∞¬−∞<B
73 72 pm2.21d A*B=−∞−∞<ByA−∞<y
74 73 a1d A*B=−∞zz<ByAz<y−∞<ByA−∞<y
75 42 67 74 3jaodan A*BB=+∞B=−∞zz<ByAz<y−∞<ByA−∞<y
76 17 75 sylan2b A*B*zz<ByAz<y−∞<ByA−∞<y
77 76 imp A*B*zz<ByAz<y−∞<ByA−∞<y
78 breq1 x=−∞x<B−∞<B
79 breq1 x=−∞x<y−∞<y
80 79 rexbidv x=−∞yAx<yyA−∞<y
81 78 80 imbi12d x=−∞x<ByAx<y−∞<ByA−∞<y
82 77 81 syl5ibrcom A*B*zz<ByAz<yx=−∞x<ByAx<y
83 82 a1dd A*B*zz<ByAz<yx=−∞xx<ByAx<yx<ByAx<y
84 8 16 83 3jaod A*B*zz<ByAz<yxx=+∞x=−∞xx<ByAx<yx<ByAx<y
85 6 84 biimtrid A*B*zz<ByAz<yx*xx<ByAx<yx<ByAx<y
86 85 com23 A*B*zz<ByAz<yxx<ByAx<yx*x<ByAx<y
87 86 ralimdv2 A*B*zz<ByAz<yxx<ByAx<yx*x<ByAx<y
88 87 ex A*B*zz<ByAz<yxx<ByAx<yx*x<ByAx<y
89 5 88 biimtrid A*B*xx<ByAx<yxx<ByAx<yx*x<ByAx<y
90 89 pm2.43d A*B*xx<ByAx<yx*x<ByAx<y
91 rexr xx*
92 91 imim1i x*x<ByAx<yxx<ByAx<y
93 92 ralimi2 x*x<ByAx<yxx<ByAx<y
94 90 93 impbid1 A*B*xx<ByAx<yx*x<ByAx<y