Metamath Proof Explorer


Theorem yonedalem3a

Description: Lemma for yoneda . (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yoneda.y Y=YonC
yoneda.b B=BaseC
yoneda.1 1˙=IdC
yoneda.o O=oppCatC
yoneda.s S=SetCatU
yoneda.t T=SetCatV
yoneda.q Q=OFuncCatS
yoneda.h H=HomFQ
yoneda.r R=Q×cOFuncCatT
yoneda.e E=OevalFS
yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
yoneda.c φCCat
yoneda.w φVW
yoneda.u φranHom𝑓CU
yoneda.v φranHom𝑓QUV
yonedalem21.f φFOFuncS
yonedalem21.x φXB
yonedalem3a.m M=fOFuncS,xBa1stYxONatSfax1˙x
Assertion yonedalem3a φFMX=a1stYXONatSFaX1˙XFMX:F1stZXF1stEX

Proof

Step Hyp Ref Expression
1 yoneda.y Y=YonC
2 yoneda.b B=BaseC
3 yoneda.1 1˙=IdC
4 yoneda.o O=oppCatC
5 yoneda.s S=SetCatU
6 yoneda.t T=SetCatV
7 yoneda.q Q=OFuncCatS
8 yoneda.h H=HomFQ
9 yoneda.r R=Q×cOFuncCatT
10 yoneda.e E=OevalFS
11 yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
12 yoneda.c φCCat
13 yoneda.w φVW
14 yoneda.u φranHom𝑓CU
15 yoneda.v φranHom𝑓QUV
16 yonedalem21.f φFOFuncS
17 yonedalem21.x φXB
18 yonedalem3a.m M=fOFuncS,xBa1stYxONatSfax1˙x
19 simpr f=Fx=Xx=X
20 19 fveq2d f=Fx=X1stYx=1stYX
21 simpl f=Fx=Xf=F
22 20 21 oveq12d f=Fx=X1stYxONatSf=1stYXONatSF
23 19 fveq2d f=Fx=Xax=aX
24 19 fveq2d f=Fx=X1˙x=1˙X
25 23 24 fveq12d f=Fx=Xax1˙x=aX1˙X
26 22 25 mpteq12dv f=Fx=Xa1stYxONatSfax1˙x=a1stYXONatSFaX1˙X
27 ovex 1stYXONatSFV
28 27 mptex a1stYXONatSFaX1˙XV
29 26 18 28 ovmpoa FOFuncSXBFMX=a1stYXONatSFaX1˙X
30 16 17 29 syl2anc φFMX=a1stYXONatSFaX1˙X
31 eqid ONatS=ONatS
32 simpr φa1stYXONatSFa1stYXONatSF
33 31 32 nat1st2nd φa1stYXONatSFa1st1stYX2nd1stYXONatS1stF2ndF
34 4 2 oppcbas B=BaseO
35 eqid HomS=HomS
36 17 adantr φa1stYXONatSFXB
37 31 33 34 35 36 natcl φa1stYXONatSFaX1st1stYXXHomS1stFX
38 15 unssbd φUV
39 13 38 ssexd φUV
40 39 adantr φa1stYXONatSFUV
41 eqid BaseS=BaseS
42 relfunc RelOFuncS
43 1 2 12 17 4 5 39 14 yon1cl φ1stYXOFuncS
44 1st2ndbr RelOFuncS1stYXOFuncS1st1stYXOFuncS2nd1stYX
45 42 43 44 sylancr φ1st1stYXOFuncS2nd1stYX
46 34 41 45 funcf1 φ1st1stYX:BBaseS
47 46 17 ffvelcdmd φ1st1stYXXBaseS
48 5 39 setcbas φU=BaseS
49 47 48 eleqtrrd φ1st1stYXXU
50 49 adantr φa1stYXONatSF1st1stYXXU
51 1st2ndbr RelOFuncSFOFuncS1stFOFuncS2ndF
52 42 16 51 sylancr φ1stFOFuncS2ndF
53 34 41 52 funcf1 φ1stF:BBaseS
54 53 17 ffvelcdmd φ1stFXBaseS
55 54 48 eleqtrrd φ1stFXU
56 55 adantr φa1stYXONatSF1stFXU
57 5 40 35 50 56 elsetchom φa1stYXONatSFaX1st1stYXXHomS1stFXaX:1st1stYXX1stFX
58 37 57 mpbid φa1stYXONatSFaX:1st1stYXX1stFX
59 eqid HomC=HomC
60 2 59 3 12 17 catidcl φ1˙XXHomCX
61 1 2 12 17 59 17 yon11 φ1st1stYXX=XHomCX
62 60 61 eleqtrrd φ1˙X1st1stYXX
63 62 adantr φa1stYXONatSF1˙X1st1stYXX
64 58 63 ffvelcdmd φa1stYXONatSFaX1˙X1stFX
65 64 fmpttd φa1stYXONatSFaX1˙X:1stYXONatSF1stFX
66 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 yonedalem21 φF1stZX=1stYXONatSF
67 4 oppccat CCatOCat
68 12 67 syl φOCat
69 5 setccat UVSCat
70 39 69 syl φSCat
71 10 68 70 34 16 17 evlf1 φF1stEX=1stFX
72 30 66 71 feq123d φFMX:F1stZXF1stEXa1stYXONatSFaX1˙X:1stYXONatSF1stFX
73 65 72 mpbird φFMX:F1stZXF1stEX
74 30 73 jca φFMX=a1stYXONatSFaX1˙XFMX:F1stZXF1stEX