Metamath Proof Explorer


Theorem yonedalem3a

Description: Lemma for yoneda . (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yoneda.y Y = Yon C
yoneda.b B = Base C
yoneda.1 1 ˙ = Id C
yoneda.o O = oppCat C
yoneda.s S = SetCat U
yoneda.t T = SetCat V
yoneda.q Q = O FuncCat S
yoneda.h H = Hom F Q
yoneda.r R = Q × c O FuncCat T
yoneda.e E = O eval F S
yoneda.z Z = H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O
yoneda.c φ C Cat
yoneda.w φ V W
yoneda.u φ ran Hom 𝑓 C U
yoneda.v φ ran Hom 𝑓 Q U V
yonedalem21.f φ F O Func S
yonedalem21.x φ X B
yonedalem3a.m M = f O Func S , x B a 1 st Y x O Nat S f a x 1 ˙ x
Assertion yonedalem3a φ F M X = a 1 st Y X O Nat S F a X 1 ˙ X F M X : F 1 st Z X F 1 st E X

Proof

Step Hyp Ref Expression
1 yoneda.y Y = Yon C
2 yoneda.b B = Base C
3 yoneda.1 1 ˙ = Id C
4 yoneda.o O = oppCat C
5 yoneda.s S = SetCat U
6 yoneda.t T = SetCat V
7 yoneda.q Q = O FuncCat S
8 yoneda.h H = Hom F Q
9 yoneda.r R = Q × c O FuncCat T
10 yoneda.e E = O eval F S
11 yoneda.z Z = H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O
12 yoneda.c φ C Cat
13 yoneda.w φ V W
14 yoneda.u φ ran Hom 𝑓 C U
15 yoneda.v φ ran Hom 𝑓 Q U V
16 yonedalem21.f φ F O Func S
17 yonedalem21.x φ X B
18 yonedalem3a.m M = f O Func S , x B a 1 st Y x O Nat S f a x 1 ˙ x
19 simpr f = F x = X x = X
20 19 fveq2d f = F x = X 1 st Y x = 1 st Y X
21 simpl f = F x = X f = F
22 20 21 oveq12d f = F x = X 1 st Y x O Nat S f = 1 st Y X O Nat S F
23 19 fveq2d f = F x = X a x = a X
24 19 fveq2d f = F x = X 1 ˙ x = 1 ˙ X
25 23 24 fveq12d f = F x = X a x 1 ˙ x = a X 1 ˙ X
26 22 25 mpteq12dv f = F x = X a 1 st Y x O Nat S f a x 1 ˙ x = a 1 st Y X O Nat S F a X 1 ˙ X
27 ovex 1 st Y X O Nat S F V
28 27 mptex a 1 st Y X O Nat S F a X 1 ˙ X V
29 26 18 28 ovmpoa F O Func S X B F M X = a 1 st Y X O Nat S F a X 1 ˙ X
30 16 17 29 syl2anc φ F M X = a 1 st Y X O Nat S F a X 1 ˙ X
31 eqid O Nat S = O Nat S
32 simpr φ a 1 st Y X O Nat S F a 1 st Y X O Nat S F
33 31 32 nat1st2nd φ a 1 st Y X O Nat S F a 1 st 1 st Y X 2 nd 1 st Y X O Nat S 1 st F 2 nd F
34 4 2 oppcbas B = Base O
35 eqid Hom S = Hom S
36 17 adantr φ a 1 st Y X O Nat S F X B
37 31 33 34 35 36 natcl φ a 1 st Y X O Nat S F a X 1 st 1 st Y X X Hom S 1 st F X
38 15 unssbd φ U V
39 13 38 ssexd φ U V
40 39 adantr φ a 1 st Y X O Nat S F U V
41 eqid Base S = Base S
42 relfunc Rel O Func S
43 1 2 12 17 4 5 39 14 yon1cl φ 1 st Y X O Func S
44 1st2ndbr Rel O Func S 1 st Y X O Func S 1 st 1 st Y X O Func S 2 nd 1 st Y X
45 42 43 44 sylancr φ 1 st 1 st Y X O Func S 2 nd 1 st Y X
46 34 41 45 funcf1 φ 1 st 1 st Y X : B Base S
47 46 17 ffvelrnd φ 1 st 1 st Y X X Base S
48 5 39 setcbas φ U = Base S
49 47 48 eleqtrrd φ 1 st 1 st Y X X U
50 49 adantr φ a 1 st Y X O Nat S F 1 st 1 st Y X X U
51 1st2ndbr Rel O Func S F O Func S 1 st F O Func S 2 nd F
52 42 16 51 sylancr φ 1 st F O Func S 2 nd F
53 34 41 52 funcf1 φ 1 st F : B Base S
54 53 17 ffvelrnd φ 1 st F X Base S
55 54 48 eleqtrrd φ 1 st F X U
56 55 adantr φ a 1 st Y X O Nat S F 1 st F X U
57 5 40 35 50 56 elsetchom φ a 1 st Y X O Nat S F a X 1 st 1 st Y X X Hom S 1 st F X a X : 1 st 1 st Y X X 1 st F X
58 37 57 mpbid φ a 1 st Y X O Nat S F a X : 1 st 1 st Y X X 1 st F X
59 eqid Hom C = Hom C
60 2 59 3 12 17 catidcl φ 1 ˙ X X Hom C X
61 1 2 12 17 59 17 yon11 φ 1 st 1 st Y X X = X Hom C X
62 60 61 eleqtrrd φ 1 ˙ X 1 st 1 st Y X X
63 62 adantr φ a 1 st Y X O Nat S F 1 ˙ X 1 st 1 st Y X X
64 58 63 ffvelrnd φ a 1 st Y X O Nat S F a X 1 ˙ X 1 st F X
65 64 fmpttd φ a 1 st Y X O Nat S F a X 1 ˙ X : 1 st Y X O Nat S F 1 st F X
66 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 yonedalem21 φ F 1 st Z X = 1 st Y X O Nat S F
67 4 oppccat C Cat O Cat
68 12 67 syl φ O Cat
69 5 setccat U V S Cat
70 39 69 syl φ S Cat
71 10 68 70 34 16 17 evlf1 φ F 1 st E X = 1 st F X
72 30 66 71 feq123d φ F M X : F 1 st Z X F 1 st E X a 1 st Y X O Nat S F a X 1 ˙ X : 1 st Y X O Nat S F 1 st F X
73 65 72 mpbird φ F M X : F 1 st Z X F 1 st E X
74 30 73 jca φ F M X = a 1 st Y X O Nat S F a X 1 ˙ X F M X : F 1 st Z X F 1 st E X