| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zarclsx.1 |
|
| 2 |
|
zarcls1.1 |
|
| 3 |
|
simplr |
|
| 4 |
|
sseq2 |
|
| 5 |
|
eqid |
|
| 6 |
5
|
mxidlprm |
|
| 7 |
6
|
ad5ant14 |
|
| 8 |
|
simpr |
|
| 9 |
4 7 8
|
elrabd |
|
| 10 |
1
|
a1i |
|
| 11 |
|
sseq1 |
|
| 12 |
11
|
rabbidv |
|
| 13 |
12
|
adantl |
|
| 14 |
|
simp-4r |
|
| 15 |
|
fvex |
|
| 16 |
15
|
rabex |
|
| 17 |
16
|
a1i |
|
| 18 |
10 13 14 17
|
fvmptd |
|
| 19 |
9 18
|
eleqtrrd |
|
| 20 |
|
ne0i |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
crngring |
|
| 23 |
2
|
ssmxidl |
|
| 24 |
23
|
3expa |
|
| 25 |
22 24
|
sylanl1 |
|
| 26 |
21 25
|
r19.29a |
|
| 27 |
26
|
adantlr |
|
| 28 |
27
|
neneqd |
|
| 29 |
3 28
|
pm2.65da |
|
| 30 |
|
nne |
|
| 31 |
29 30
|
sylib |
|
| 32 |
|
fveq2 |
|
| 33 |
32
|
adantl |
|
| 34 |
1
|
a1i |
|
| 35 |
|
sseq1 |
|
| 36 |
35
|
adantl |
|
| 37 |
36
|
rabbidv |
|
| 38 |
|
eqid |
|
| 39 |
38 2
|
lidl1 |
|
| 40 |
15
|
rabex |
|
| 41 |
40
|
a1i |
|
| 42 |
34 37 39 41
|
fvmptd |
|
| 43 |
|
prmidlidl |
|
| 44 |
2 38
|
lidlss |
|
| 45 |
43 44
|
syl |
|
| 46 |
45
|
adantr |
|
| 47 |
|
simpr |
|
| 48 |
46 47
|
eqssd |
|
| 49 |
|
eqid |
|
| 50 |
2 49
|
prmidlnr |
|
| 51 |
50
|
adantr |
|
| 52 |
51
|
neneqd |
|
| 53 |
48 52
|
pm2.65da |
|
| 54 |
53
|
ralrimiva |
|
| 55 |
|
rabeq0 |
|
| 56 |
54 55
|
sylibr |
|
| 57 |
42 56
|
eqtrd |
|
| 58 |
22 57
|
syl |
|
| 59 |
58
|
ad2antrr |
|
| 60 |
33 59
|
eqtrd |
|
| 61 |
31 60
|
impbida |
|