Metamath Proof Explorer


Theorem zntoslem

Description: Lemma for zntos . (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znle2.y Y=/N
znle2.f F=ℤRHomYW
znle2.w W=ifN=00..^N
znle2.l ˙=Y
znleval.x X=BaseY
Assertion zntoslem N0YToset

Proof

Step Hyp Ref Expression
1 znle2.y Y=/N
2 znle2.f F=ℤRHomYW
3 znle2.w W=ifN=00..^N
4 znle2.l ˙=Y
5 znleval.x X=BaseY
6 1 fvexi YV
7 6 a1i N0YV
8 5 a1i N0X=BaseY
9 4 a1i N0˙=Y
10 1 5 2 3 znf1o N0F:W1-1 ontoX
11 f1ocnv F:W1-1 ontoXF-1:X1-1 ontoW
12 10 11 syl N0F-1:X1-1 ontoW
13 f1of F-1:X1-1 ontoWF-1:XW
14 12 13 syl N0F-1:XW
15 sseq1 =ifN=00..^NifN=00..^N
16 sseq1 0..^N=ifN=00..^N0..^NifN=00..^N
17 ssid
18 fzossz 0..^N
19 15 16 17 18 keephyp ifN=00..^N
20 3 19 eqsstri W
21 zssre
22 20 21 sstri W
23 fss F-1:XWWF-1:X
24 14 22 23 sylancl N0F-1:X
25 24 ffvelcdmda N0xXF-1x
26 25 leidd N0xXF-1xF-1x
27 1 2 3 4 5 znleval2 N0xXxXx˙xF-1xF-1x
28 27 3anidm23 N0xXx˙xF-1xF-1x
29 26 28 mpbird N0xXx˙x
30 1 2 3 4 5 znleval2 N0xXyXx˙yF-1xF-1y
31 1 2 3 4 5 znleval2 N0yXxXy˙xF-1yF-1x
32 31 3com23 N0xXyXy˙xF-1yF-1x
33 30 32 anbi12d N0xXyXx˙yy˙xF-1xF-1yF-1yF-1x
34 25 3adant3 N0xXyXF-1x
35 24 ffvelcdmda N0yXF-1y
36 35 3adant2 N0xXyXF-1y
37 34 36 letri3d N0xXyXF-1x=F-1yF-1xF-1yF-1yF-1x
38 f1of1 F-1:X1-1 ontoWF-1:X1-1W
39 12 38 syl N0F-1:X1-1W
40 f1fveq F-1:X1-1WxXyXF-1x=F-1yx=y
41 39 40 sylan N0xXyXF-1x=F-1yx=y
42 41 3impb N0xXyXF-1x=F-1yx=y
43 33 37 42 3bitr2d N0xXyXx˙yy˙xx=y
44 43 biimpd N0xXyXx˙yy˙xx=y
45 25 3ad2antr1 N0xXyXzXF-1x
46 35 3ad2antr2 N0xXyXzXF-1y
47 24 ffvelcdmda N0zXF-1z
48 47 3ad2antr3 N0xXyXzXF-1z
49 letr F-1xF-1yF-1zF-1xF-1yF-1yF-1zF-1xF-1z
50 45 46 48 49 syl3anc N0xXyXzXF-1xF-1yF-1yF-1zF-1xF-1z
51 30 3adant3r3 N0xXyXzXx˙yF-1xF-1y
52 1 2 3 4 5 znleval2 N0yXzXy˙zF-1yF-1z
53 52 3adant3r1 N0xXyXzXy˙zF-1yF-1z
54 51 53 anbi12d N0xXyXzXx˙yy˙zF-1xF-1yF-1yF-1z
55 1 2 3 4 5 znleval2 N0xXzXx˙zF-1xF-1z
56 55 3adant3r2 N0xXyXzXx˙zF-1xF-1z
57 50 54 56 3imtr4d N0xXyXzXx˙yy˙zx˙z
58 7 8 9 29 44 57 isposd N0YPoset
59 34 36 letrid N0xXyXF-1xF-1yF-1yF-1x
60 30 32 orbi12d N0xXyXx˙yy˙xF-1xF-1yF-1yF-1x
61 59 60 mpbird N0xXyXx˙yy˙x
62 61 3expb N0xXyXx˙yy˙x
63 62 ralrimivva N0xXyXx˙yy˙x
64 5 4 istos YTosetYPosetxXyXx˙yy˙x
65 58 63 64 sylanbrc N0YToset