Metamath Proof Explorer


Theorem zrinitorngc

Description: The zero ring is an initial object in the category of nonunital rings. (Contributed by AV, 18-Apr-2020)

Ref Expression
Hypotheses zrinitorngc.u φ U V
zrinitorngc.c C = RngCat U
zrinitorngc.z φ Z Ring NzRing
zrinitorngc.e φ Z U
Assertion zrinitorngc φ Z InitO C

Proof

Step Hyp Ref Expression
1 zrinitorngc.u φ U V
2 zrinitorngc.c C = RngCat U
3 zrinitorngc.z φ Z Ring NzRing
4 zrinitorngc.e φ Z U
5 eqid Base C = Base C
6 2 5 1 rngcbas φ Base C = U Rng
7 6 eleq2d φ r Base C r U Rng
8 elin r U Rng r U r Rng
9 8 simprbi r U Rng r Rng
10 7 9 syl6bi φ r Base C r Rng
11 10 imp φ r Base C r Rng
12 3 adantr φ r Base C Z Ring NzRing
13 eqid Base Z = Base Z
14 eqid 0 r = 0 r
15 eqid x Base Z 0 r = x Base Z 0 r
16 13 14 15 zrrnghm r Rng Z Ring NzRing x Base Z 0 r Z RngHomo r
17 11 12 16 syl2anc φ r Base C x Base Z 0 r Z RngHomo r
18 simpr φ r Base C x Base Z 0 r Z RngHomo r x Base Z 0 r Z RngHomo r
19 1 adantr φ r Base C U V
20 eqid Hom C = Hom C
21 eldifi Z Ring NzRing Z Ring
22 ringrng Z Ring Z Rng
23 3 21 22 3syl φ Z Rng
24 4 23 elind φ Z U Rng
25 24 6 eleqtrrd φ Z Base C
26 25 adantr φ r Base C Z Base C
27 simpr φ r Base C r Base C
28 2 5 19 20 26 27 rngchom φ r Base C Z Hom C r = Z RngHomo r
29 28 eqcomd φ r Base C Z RngHomo r = Z Hom C r
30 29 eleq2d φ r Base C x Base Z 0 r Z RngHomo r x Base Z 0 r Z Hom C r
31 30 biimpa φ r Base C x Base Z 0 r Z RngHomo r x Base Z 0 r Z Hom C r
32 28 eleq2d φ r Base C h Z Hom C r h Z RngHomo r
33 eqid Base r = Base r
34 13 33 rnghmf h Z RngHomo r h : Base Z Base r
35 32 34 syl6bi φ r Base C h Z Hom C r h : Base Z Base r
36 35 imp φ r Base C h Z Hom C r h : Base Z Base r
37 ffn h : Base Z Base r h Fn Base Z
38 37 adantl φ r Base C h Z Hom C r h : Base Z Base r h Fn Base Z
39 fvex 0 r V
40 39 15 fnmpti x Base Z 0 r Fn Base Z
41 40 a1i φ r Base C h Z Hom C r h : Base Z Base r x Base Z 0 r Fn Base Z
42 32 biimpa φ r Base C h Z Hom C r h Z RngHomo r
43 rnghmghm h Z RngHomo r h Z GrpHom r
44 eqid 0 Z = 0 Z
45 44 14 ghmid h Z GrpHom r h 0 Z = 0 r
46 42 43 45 3syl φ r Base C h Z Hom C r h 0 Z = 0 r
47 46 ad2antrr φ r Base C h Z Hom C r h : Base Z Base r a Base Z h 0 Z = 0 r
48 13 44 0ringbas Z Ring NzRing Base Z = 0 Z
49 3 48 syl φ Base Z = 0 Z
50 49 eleq2d φ a Base Z a 0 Z
51 elsni a 0 Z a = 0 Z
52 51 fveq2d a 0 Z h a = h 0 Z
53 50 52 syl6bi φ a Base Z h a = h 0 Z
54 53 adantr φ r Base C a Base Z h a = h 0 Z
55 54 ad2antrr φ r Base C h Z Hom C r h : Base Z Base r a Base Z h a = h 0 Z
56 55 imp φ r Base C h Z Hom C r h : Base Z Base r a Base Z h a = h 0 Z
57 eqidd a Base Z x Base Z 0 r = x Base Z 0 r
58 eqidd a Base Z x = a 0 r = 0 r
59 id a Base Z a Base Z
60 39 a1i a Base Z 0 r V
61 57 58 59 60 fvmptd a Base Z x Base Z 0 r a = 0 r
62 61 adantl φ r Base C h Z Hom C r h : Base Z Base r a Base Z x Base Z 0 r a = 0 r
63 47 56 62 3eqtr4d φ r Base C h Z Hom C r h : Base Z Base r a Base Z h a = x Base Z 0 r a
64 38 41 63 eqfnfvd φ r Base C h Z Hom C r h : Base Z Base r h = x Base Z 0 r
65 36 64 mpdan φ r Base C h Z Hom C r h = x Base Z 0 r
66 65 ex φ r Base C h Z Hom C r h = x Base Z 0 r
67 66 adantr φ r Base C x Base Z 0 r Z RngHomo r h Z Hom C r h = x Base Z 0 r
68 67 alrimiv φ r Base C x Base Z 0 r Z RngHomo r h h Z Hom C r h = x Base Z 0 r
69 18 31 68 3jca φ r Base C x Base Z 0 r Z RngHomo r x Base Z 0 r Z RngHomo r x Base Z 0 r Z Hom C r h h Z Hom C r h = x Base Z 0 r
70 17 69 mpdan φ r Base C x Base Z 0 r Z RngHomo r x Base Z 0 r Z Hom C r h h Z Hom C r h = x Base Z 0 r
71 eleq1 h = x Base Z 0 r h Z Hom C r x Base Z 0 r Z Hom C r
72 71 eqeu x Base Z 0 r Z RngHomo r x Base Z 0 r Z Hom C r h h Z Hom C r h = x Base Z 0 r ∃! h h Z Hom C r
73 70 72 syl φ r Base C ∃! h h Z Hom C r
74 73 ralrimiva φ r Base C ∃! h h Z Hom C r
75 2 rngccat U V C Cat
76 1 75 syl φ C Cat
77 5 20 76 25 isinito φ Z InitO C r Base C ∃! h h Z Hom C r
78 74 77 mpbird φ Z InitO C