| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrinitorngc.u |
|
| 2 |
|
zrinitorngc.c |
|
| 3 |
|
zrinitorngc.z |
|
| 4 |
|
zrinitorngc.e |
|
| 5 |
|
eqid |
|
| 6 |
2 5 1
|
rngcbas |
|
| 7 |
6
|
eleq2d |
|
| 8 |
|
elin |
|
| 9 |
8
|
simprbi |
|
| 10 |
7 9
|
biimtrdi |
|
| 11 |
10
|
imp |
|
| 12 |
3
|
adantr |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
13 14 15
|
zrrnghm |
|
| 17 |
11 12 16
|
syl2anc |
|
| 18 |
|
simpr |
|
| 19 |
1
|
adantr |
|
| 20 |
|
eqid |
|
| 21 |
|
eldifi |
|
| 22 |
|
ringrng |
|
| 23 |
3 21 22
|
3syl |
|
| 24 |
4 23
|
elind |
|
| 25 |
24 6
|
eleqtrrd |
|
| 26 |
25
|
adantr |
|
| 27 |
|
simpr |
|
| 28 |
2 5 19 20 26 27
|
rngchom |
|
| 29 |
28
|
eqcomd |
|
| 30 |
29
|
eleq2d |
|
| 31 |
30
|
biimpa |
|
| 32 |
28
|
eleq2d |
|
| 33 |
|
eqid |
|
| 34 |
13 33
|
rnghmf |
|
| 35 |
32 34
|
biimtrdi |
|
| 36 |
35
|
imp |
|
| 37 |
|
ffn |
|
| 38 |
37
|
adantl |
|
| 39 |
|
fvex |
|
| 40 |
39 15
|
fnmpti |
|
| 41 |
40
|
a1i |
|
| 42 |
32
|
biimpa |
|
| 43 |
|
rnghmghm |
|
| 44 |
|
eqid |
|
| 45 |
44 14
|
ghmid |
|
| 46 |
42 43 45
|
3syl |
|
| 47 |
46
|
ad2antrr |
|
| 48 |
13 44
|
0ringbas |
|
| 49 |
3 48
|
syl |
|
| 50 |
49
|
eleq2d |
|
| 51 |
|
elsni |
|
| 52 |
51
|
fveq2d |
|
| 53 |
50 52
|
biimtrdi |
|
| 54 |
53
|
adantr |
|
| 55 |
54
|
ad2antrr |
|
| 56 |
55
|
imp |
|
| 57 |
|
eqidd |
|
| 58 |
|
eqidd |
|
| 59 |
|
id |
|
| 60 |
39
|
a1i |
|
| 61 |
57 58 59 60
|
fvmptd |
|
| 62 |
61
|
adantl |
|
| 63 |
47 56 62
|
3eqtr4d |
|
| 64 |
38 41 63
|
eqfnfvd |
|
| 65 |
36 64
|
mpdan |
|
| 66 |
65
|
ex |
|
| 67 |
66
|
adantr |
|
| 68 |
67
|
alrimiv |
|
| 69 |
18 31 68
|
3jca |
|
| 70 |
17 69
|
mpdan |
|
| 71 |
|
eleq1 |
|
| 72 |
71
|
eqeu |
|
| 73 |
70 72
|
syl |
|
| 74 |
73
|
ralrimiva |
|
| 75 |
2
|
rngccat |
|
| 76 |
1 75
|
syl |
|
| 77 |
5 20 76 25
|
isinito |
|
| 78 |
74 77
|
mpbird |
|