Description: The constant mapping to zero is a non-unital ring homomorphism from the zero ring to any non-unital ring. (Contributed by AV, 17-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zrrhm.b | |
|
zrrhm.0 | |
||
zrrhm.h | |
||
Assertion | zrrnghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrrhm.b | |
|
2 | zrrhm.0 | |
|
3 | zrrhm.h | |
|
4 | eldifi | |
|
5 | ringrng | |
|
6 | 4 5 | syl | |
7 | 6 | anim1i | |
8 | 7 | ancoms | |
9 | rngabl | |
|
10 | ablgrp | |
|
11 | 9 10 | syl | |
12 | 11 | adantr | |
13 | ringgrp | |
|
14 | 4 13 | syl | |
15 | 14 | adantl | |
16 | eqid | |
|
17 | 1 16 | 0ringbas | |
18 | 17 | adantl | |
19 | 1 2 3 16 | c0snghm | |
20 | 12 15 18 19 | syl3anc | |
21 | 3 | a1i | |
22 | eqidd | |
|
23 | 1 16 | ring0cl | |
24 | 4 23 | syl | |
25 | 24 | ad2antlr | |
26 | 2 | fvexi | |
27 | 26 | a1i | |
28 | 21 22 25 27 | fvmptd | |
29 | eqid | |
|
30 | 29 2 | grpidcl | |
31 | 11 30 | syl | |
32 | eqid | |
|
33 | 29 32 2 | rnglz | |
34 | 31 33 | mpdan | |
35 | 34 | adantr | |
36 | 35 | adantr | |
37 | 36 | adantr | |
38 | simpr | |
|
39 | 38 38 | oveq12d | |
40 | eqid | |
|
41 | 1 40 16 | ringlz | |
42 | 4 23 41 | syl2anc2 | |
43 | 42 | ad2antlr | |
44 | 43 | adantr | |
45 | 44 | fveq2d | |
46 | 45 38 | eqtrd | |
47 | 37 39 46 | 3eqtr4rd | |
48 | 28 47 | mpdan | |
49 | 23 23 | jca | |
50 | 4 49 | syl | |
51 | 50 | ad2antlr | |
52 | fvoveq1 | |
|
53 | fveq2 | |
|
54 | 53 | oveq1d | |
55 | 52 54 | eqeq12d | |
56 | oveq2 | |
|
57 | 56 | fveq2d | |
58 | fveq2 | |
|
59 | 58 | oveq2d | |
60 | 57 59 | eqeq12d | |
61 | 55 60 | 2ralsng | |
62 | 51 61 | syl | |
63 | 48 62 | mpbird | |
64 | raleq | |
|
65 | 64 | raleqbi1dv | |
66 | 65 | adantl | |
67 | 63 66 | mpbird | |
68 | 18 67 | mpdan | |
69 | 20 68 | jca | |
70 | 1 40 32 | isrnghm | |
71 | 8 69 70 | sylanbrc | |