Metamath Proof Explorer


Theorem zrrnghm

Description: The constant mapping to zero is a non-unital ring homomorphism from the zero ring to any non-unital ring. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses zrrhm.b B=BaseT
zrrhm.0 0˙=0S
zrrhm.h H=xB0˙
Assertion zrrnghm SRngTRingNzRingHTRngHomoS

Proof

Step Hyp Ref Expression
1 zrrhm.b B=BaseT
2 zrrhm.0 0˙=0S
3 zrrhm.h H=xB0˙
4 eldifi TRingNzRingTRing
5 ringrng TRingTRng
6 4 5 syl TRingNzRingTRng
7 6 anim1i TRingNzRingSRngTRngSRng
8 7 ancoms SRngTRingNzRingTRngSRng
9 rngabl SRngSAbel
10 ablgrp SAbelSGrp
11 9 10 syl SRngSGrp
12 11 adantr SRngTRingNzRingSGrp
13 ringgrp TRingTGrp
14 4 13 syl TRingNzRingTGrp
15 14 adantl SRngTRingNzRingTGrp
16 eqid 0T=0T
17 1 16 0ringbas TRingNzRingB=0T
18 17 adantl SRngTRingNzRingB=0T
19 1 2 3 16 c0snghm SGrpTGrpB=0THTGrpHomS
20 12 15 18 19 syl3anc SRngTRingNzRingHTGrpHomS
21 3 a1i SRngTRingNzRingB=0TH=xB0˙
22 eqidd SRngTRingNzRingB=0Tx=0T0˙=0˙
23 1 16 ring0cl TRing0TB
24 4 23 syl TRingNzRing0TB
25 24 ad2antlr SRngTRingNzRingB=0T0TB
26 2 fvexi 0˙V
27 26 a1i SRngTRingNzRingB=0T0˙V
28 21 22 25 27 fvmptd SRngTRingNzRingB=0TH0T=0˙
29 eqid BaseS=BaseS
30 29 2 grpidcl SGrp0˙BaseS
31 11 30 syl SRng0˙BaseS
32 eqid S=S
33 29 32 2 rnglz SRng0˙BaseS0˙S0˙=0˙
34 31 33 mpdan SRng0˙S0˙=0˙
35 34 adantr SRngTRingNzRing0˙S0˙=0˙
36 35 adantr SRngTRingNzRingB=0T0˙S0˙=0˙
37 36 adantr SRngTRingNzRingB=0TH0T=0˙0˙S0˙=0˙
38 simpr SRngTRingNzRingB=0TH0T=0˙H0T=0˙
39 38 38 oveq12d SRngTRingNzRingB=0TH0T=0˙H0TSH0T=0˙S0˙
40 eqid T=T
41 1 40 16 ringlz TRing0TB0TT0T=0T
42 4 23 41 syl2anc2 TRingNzRing0TT0T=0T
43 42 ad2antlr SRngTRingNzRingB=0T0TT0T=0T
44 43 adantr SRngTRingNzRingB=0TH0T=0˙0TT0T=0T
45 44 fveq2d SRngTRingNzRingB=0TH0T=0˙H0TT0T=H0T
46 45 38 eqtrd SRngTRingNzRingB=0TH0T=0˙H0TT0T=0˙
47 37 39 46 3eqtr4rd SRngTRingNzRingB=0TH0T=0˙H0TT0T=H0TSH0T
48 28 47 mpdan SRngTRingNzRingB=0TH0TT0T=H0TSH0T
49 23 23 jca TRing0TB0TB
50 4 49 syl TRingNzRing0TB0TB
51 50 ad2antlr SRngTRingNzRingB=0T0TB0TB
52 fvoveq1 a=0THaTc=H0TTc
53 fveq2 a=0THa=H0T
54 53 oveq1d a=0THaSHc=H0TSHc
55 52 54 eqeq12d a=0THaTc=HaSHcH0TTc=H0TSHc
56 oveq2 c=0T0TTc=0TT0T
57 56 fveq2d c=0TH0TTc=H0TT0T
58 fveq2 c=0THc=H0T
59 58 oveq2d c=0TH0TSHc=H0TSH0T
60 57 59 eqeq12d c=0TH0TTc=H0TSHcH0TT0T=H0TSH0T
61 55 60 2ralsng 0TB0TBa0Tc0THaTc=HaSHcH0TT0T=H0TSH0T
62 51 61 syl SRngTRingNzRingB=0Ta0Tc0THaTc=HaSHcH0TT0T=H0TSH0T
63 48 62 mpbird SRngTRingNzRingB=0Ta0Tc0THaTc=HaSHc
64 raleq B=0TcBHaTc=HaSHcc0THaTc=HaSHc
65 64 raleqbi1dv B=0TaBcBHaTc=HaSHca0Tc0THaTc=HaSHc
66 65 adantl SRngTRingNzRingB=0TaBcBHaTc=HaSHca0Tc0THaTc=HaSHc
67 63 66 mpbird SRngTRingNzRingB=0TaBcBHaTc=HaSHc
68 18 67 mpdan SRngTRingNzRingaBcBHaTc=HaSHc
69 20 68 jca SRngTRingNzRingHTGrpHomSaBcBHaTc=HaSHc
70 1 40 32 isrnghm HTRngHomoSTRngSRngHTGrpHomSaBcBHaTc=HaSHc
71 8 69 70 sylanbrc SRngTRingNzRingHTRngHomoS