| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2fveq3 | ⊢ ( 𝐴  =  0ℎ  →  ( normfn ‘ ( bra ‘ 𝐴 ) )  =  ( normfn ‘ ( bra ‘ 0ℎ ) ) ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝐴  =  0ℎ  →  ( normℎ ‘ 𝐴 )  =  ( normℎ ‘ 0ℎ ) ) | 
						
							| 3 | 1 2 | eqeq12d | ⊢ ( 𝐴  =  0ℎ  →  ( ( normfn ‘ ( bra ‘ 𝐴 ) )  =  ( normℎ ‘ 𝐴 )  ↔  ( normfn ‘ ( bra ‘ 0ℎ ) )  =  ( normℎ ‘ 0ℎ ) ) ) | 
						
							| 4 |  | brafn | ⊢ ( 𝐴  ∈   ℋ  →  ( bra ‘ 𝐴 ) :  ℋ ⟶ ℂ ) | 
						
							| 5 |  | nmfnval | ⊢ ( ( bra ‘ 𝐴 ) :  ℋ ⟶ ℂ  →  ( normfn ‘ ( bra ‘ 𝐴 ) )  =  sup ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐴  ∈   ℋ  →  ( normfn ‘ ( bra ‘ 𝐴 ) )  =  sup ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( normfn ‘ ( bra ‘ 𝐴 ) )  =  sup ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 8 |  | nmfnsetre | ⊢ ( ( bra ‘ 𝐴 ) :  ℋ ⟶ ℂ  →  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) }  ⊆  ℝ ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝐴  ∈   ℋ  →  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) }  ⊆  ℝ ) | 
						
							| 10 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 11 | 9 10 | sstrdi | ⊢ ( 𝐴  ∈   ℋ  →  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) }  ⊆  ℝ* ) | 
						
							| 12 |  | normcl | ⊢ ( 𝐴  ∈   ℋ  →  ( normℎ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 13 | 12 | rexrd | ⊢ ( 𝐴  ∈   ℋ  →  ( normℎ ‘ 𝐴 )  ∈  ℝ* ) | 
						
							| 14 | 11 13 | jca | ⊢ ( 𝐴  ∈   ℋ  →  ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) }  ⊆  ℝ*  ∧  ( normℎ ‘ 𝐴 )  ∈  ℝ* ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) }  ⊆  ℝ*  ∧  ( normℎ ‘ 𝐴 )  ∈  ℝ* ) ) | 
						
							| 16 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 17 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) )  ↔  𝑧  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) | 
						
							| 18 | 17 | anbi2d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) )  ↔  ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑧  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) )  ↔  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑧  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 20 | 16 19 | elab | ⊢ ( 𝑧  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) }  ↔  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑧  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) | 
						
							| 21 |  | id | ⊢ ( 𝑧  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) )  →  𝑧  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) | 
						
							| 22 |  | braval | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( bra ‘ 𝐴 ) ‘ 𝑦 )  =  ( 𝑦  ·ih  𝐴 ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) )  =  ( abs ‘ ( 𝑦  ·ih  𝐴 ) ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ( normℎ ‘ 𝑦 )  ≤  1 )  →  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) )  =  ( abs ‘ ( 𝑦  ·ih  𝐴 ) ) ) | 
						
							| 25 | 21 24 | sylan9eqr | ⊢ ( ( ( ( 𝐴  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ( normℎ ‘ 𝑦 )  ≤  1 )  ∧  𝑧  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) )  →  𝑧  =  ( abs ‘ ( 𝑦  ·ih  𝐴 ) ) ) | 
						
							| 26 |  | bcs2 | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝐴  ∈   ℋ  ∧  ( normℎ ‘ 𝑦 )  ≤  1 )  →  ( abs ‘ ( 𝑦  ·ih  𝐴 ) )  ≤  ( normℎ ‘ 𝐴 ) ) | 
						
							| 27 | 26 | 3expa | ⊢ ( ( ( 𝑦  ∈   ℋ  ∧  𝐴  ∈   ℋ )  ∧  ( normℎ ‘ 𝑦 )  ≤  1 )  →  ( abs ‘ ( 𝑦  ·ih  𝐴 ) )  ≤  ( normℎ ‘ 𝐴 ) ) | 
						
							| 28 | 27 | ancom1s | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ( normℎ ‘ 𝑦 )  ≤  1 )  →  ( abs ‘ ( 𝑦  ·ih  𝐴 ) )  ≤  ( normℎ ‘ 𝐴 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( ( 𝐴  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ( normℎ ‘ 𝑦 )  ≤  1 )  ∧  𝑧  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) )  →  ( abs ‘ ( 𝑦  ·ih  𝐴 ) )  ≤  ( normℎ ‘ 𝐴 ) ) | 
						
							| 30 | 25 29 | eqbrtrd | ⊢ ( ( ( ( 𝐴  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  ( normℎ ‘ 𝑦 )  ≤  1 )  ∧  𝑧  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) )  →  𝑧  ≤  ( normℎ ‘ 𝐴 ) ) | 
						
							| 31 | 30 | exp41 | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝑦  ∈   ℋ  →  ( ( normℎ ‘ 𝑦 )  ≤  1  →  ( 𝑧  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) )  →  𝑧  ≤  ( normℎ ‘ 𝐴 ) ) ) ) ) | 
						
							| 32 | 31 | imp4a | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝑦  ∈   ℋ  →  ( ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑧  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) )  →  𝑧  ≤  ( normℎ ‘ 𝐴 ) ) ) ) | 
						
							| 33 | 32 | rexlimdv | ⊢ ( 𝐴  ∈   ℋ  →  ( ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑧  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) )  →  𝑧  ≤  ( normℎ ‘ 𝐴 ) ) ) | 
						
							| 34 | 33 | imp | ⊢ ( ( 𝐴  ∈   ℋ  ∧  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑧  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) )  →  𝑧  ≤  ( normℎ ‘ 𝐴 ) ) | 
						
							| 35 | 20 34 | sylan2b | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝑧  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } )  →  𝑧  ≤  ( normℎ ‘ 𝐴 ) ) | 
						
							| 36 | 35 | ralrimiva | ⊢ ( 𝐴  ∈   ℋ  →  ∀ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧  ≤  ( normℎ ‘ 𝐴 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ∀ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧  ≤  ( normℎ ‘ 𝐴 ) ) | 
						
							| 38 | 12 | recnd | ⊢ ( 𝐴  ∈   ℋ  →  ( normℎ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( normℎ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 40 |  | normne0 | ⊢ ( 𝐴  ∈   ℋ  →  ( ( normℎ ‘ 𝐴 )  ≠  0  ↔  𝐴  ≠  0ℎ ) ) | 
						
							| 41 | 40 | biimpar | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( normℎ ‘ 𝐴 )  ≠  0 ) | 
						
							| 42 | 39 41 | reccld | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( 1  /  ( normℎ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 43 |  | simpl | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  𝐴  ∈   ℋ ) | 
						
							| 44 |  | hvmulcl | ⊢ ( ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ∈  ℂ  ∧  𝐴  ∈   ℋ )  →  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  ∈   ℋ ) | 
						
							| 45 | 42 43 44 | syl2anc | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  ∈   ℋ ) | 
						
							| 46 |  | norm1 | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 ) )  =  1 ) | 
						
							| 47 |  | 1le1 | ⊢ 1  ≤  1 | 
						
							| 48 | 46 47 | eqbrtrdi | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 ) )  ≤  1 ) | 
						
							| 49 |  | ax-his3 | ⊢ ( ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ∈  ℂ  ∧  𝐴  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  ·ih  𝐴 )  =  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·  ( 𝐴  ·ih  𝐴 ) ) ) | 
						
							| 50 | 42 43 43 49 | syl3anc | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  ·ih  𝐴 )  =  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·  ( 𝐴  ·ih  𝐴 ) ) ) | 
						
							| 51 | 12 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( normℎ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 52 | 51 41 | rereccld | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( 1  /  ( normℎ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 53 |  | hiidrcl | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  ·ih  𝐴 )  ∈  ℝ ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( 𝐴  ·ih  𝐴 )  ∈  ℝ ) | 
						
							| 55 | 52 54 | remulcld | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·  ( 𝐴  ·ih  𝐴 ) )  ∈  ℝ ) | 
						
							| 56 | 50 55 | eqeltrd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  ·ih  𝐴 )  ∈  ℝ ) | 
						
							| 57 |  | normgt0 | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  ≠  0ℎ  ↔  0  <  ( normℎ ‘ 𝐴 ) ) ) | 
						
							| 58 | 57 | biimpa | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  0  <  ( normℎ ‘ 𝐴 ) ) | 
						
							| 59 | 51 58 | recgt0d | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  0  <  ( 1  /  ( normℎ ‘ 𝐴 ) ) ) | 
						
							| 60 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 61 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  ( 1  /  ( normℎ ‘ 𝐴 ) )  ∈  ℝ )  →  ( 0  <  ( 1  /  ( normℎ ‘ 𝐴 ) )  →  0  ≤  ( 1  /  ( normℎ ‘ 𝐴 ) ) ) ) | 
						
							| 62 | 60 61 | mpan | ⊢ ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ∈  ℝ  →  ( 0  <  ( 1  /  ( normℎ ‘ 𝐴 ) )  →  0  ≤  ( 1  /  ( normℎ ‘ 𝐴 ) ) ) ) | 
						
							| 63 | 52 59 62 | sylc | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  0  ≤  ( 1  /  ( normℎ ‘ 𝐴 ) ) ) | 
						
							| 64 |  | hiidge0 | ⊢ ( 𝐴  ∈   ℋ  →  0  ≤  ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  0  ≤  ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 66 | 52 54 63 65 | mulge0d | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  0  ≤  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·  ( 𝐴  ·ih  𝐴 ) ) ) | 
						
							| 67 | 66 50 | breqtrrd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  0  ≤  ( ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  ·ih  𝐴 ) ) | 
						
							| 68 | 56 67 | absidd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( abs ‘ ( ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  ·ih  𝐴 ) )  =  ( ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  ·ih  𝐴 ) ) | 
						
							| 69 | 39 41 | recid2d | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·  ( normℎ ‘ 𝐴 ) )  =  1 ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ( normℎ ‘ 𝐴 )  ·  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·  ( normℎ ‘ 𝐴 ) ) )  =  ( ( normℎ ‘ 𝐴 )  ·  1 ) ) | 
						
							| 71 | 39 42 39 | mul12d | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ( normℎ ‘ 𝐴 )  ·  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·  ( normℎ ‘ 𝐴 ) ) )  =  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·  ( ( normℎ ‘ 𝐴 )  ·  ( normℎ ‘ 𝐴 ) ) ) ) | 
						
							| 72 | 38 | sqvald | ⊢ ( 𝐴  ∈   ℋ  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  =  ( ( normℎ ‘ 𝐴 )  ·  ( normℎ ‘ 𝐴 ) ) ) | 
						
							| 73 |  | normsq | ⊢ ( 𝐴  ∈   ℋ  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 74 | 72 73 | eqtr3d | ⊢ ( 𝐴  ∈   ℋ  →  ( ( normℎ ‘ 𝐴 )  ·  ( normℎ ‘ 𝐴 ) )  =  ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ( normℎ ‘ 𝐴 )  ·  ( normℎ ‘ 𝐴 ) )  =  ( 𝐴  ·ih  𝐴 ) ) | 
						
							| 76 | 75 | oveq2d | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·  ( ( normℎ ‘ 𝐴 )  ·  ( normℎ ‘ 𝐴 ) ) )  =  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·  ( 𝐴  ·ih  𝐴 ) ) ) | 
						
							| 77 | 71 76 | eqtrd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ( normℎ ‘ 𝐴 )  ·  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·  ( normℎ ‘ 𝐴 ) ) )  =  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·  ( 𝐴  ·ih  𝐴 ) ) ) | 
						
							| 78 | 38 | mulridd | ⊢ ( 𝐴  ∈   ℋ  →  ( ( normℎ ‘ 𝐴 )  ·  1 )  =  ( normℎ ‘ 𝐴 ) ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ( normℎ ‘ 𝐴 )  ·  1 )  =  ( normℎ ‘ 𝐴 ) ) | 
						
							| 80 | 70 77 79 | 3eqtr3rd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( normℎ ‘ 𝐴 )  =  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·  ( 𝐴  ·ih  𝐴 ) ) ) | 
						
							| 81 | 50 68 80 | 3eqtr4rd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  ·ih  𝐴 ) ) ) | 
						
							| 82 |  | fveq2 | ⊢ ( 𝑦  =  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  →  ( normℎ ‘ 𝑦 )  =  ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 ) ) ) | 
						
							| 83 | 82 | breq1d | ⊢ ( 𝑦  =  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  →  ( ( normℎ ‘ 𝑦 )  ≤  1  ↔  ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 ) )  ≤  1 ) ) | 
						
							| 84 |  | fvoveq1 | ⊢ ( 𝑦  =  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  →  ( abs ‘ ( 𝑦  ·ih  𝐴 ) )  =  ( abs ‘ ( ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  ·ih  𝐴 ) ) ) | 
						
							| 85 | 84 | eqeq2d | ⊢ ( 𝑦  =  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  →  ( ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( 𝑦  ·ih  𝐴 ) )  ↔  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  ·ih  𝐴 ) ) ) ) | 
						
							| 86 | 83 85 | anbi12d | ⊢ ( 𝑦  =  ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  →  ( ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( 𝑦  ·ih  𝐴 ) ) )  ↔  ( ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 ) )  ≤  1  ∧  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  ·ih  𝐴 ) ) ) ) ) | 
						
							| 87 | 86 | rspcev | ⊢ ( ( ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  ∈   ℋ  ∧  ( ( normℎ ‘ ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 ) )  ≤  1  ∧  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( ( ( 1  /  ( normℎ ‘ 𝐴 ) )  ·ℎ  𝐴 )  ·ih  𝐴 ) ) ) )  →  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( 𝑦  ·ih  𝐴 ) ) ) ) | 
						
							| 88 | 45 48 81 87 | syl12anc | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( 𝑦  ·ih  𝐴 ) ) ) ) | 
						
							| 89 | 23 | eqeq2d | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) )  ↔  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( 𝑦  ·ih  𝐴 ) ) ) ) | 
						
							| 90 | 89 | anbi2d | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) )  ↔  ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( 𝑦  ·ih  𝐴 ) ) ) ) ) | 
						
							| 91 | 90 | rexbidva | ⊢ ( 𝐴  ∈   ℋ  →  ( ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) )  ↔  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( 𝑦  ·ih  𝐴 ) ) ) ) ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) )  ↔  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( 𝑦  ·ih  𝐴 ) ) ) ) ) | 
						
							| 93 | 88 92 | mpbird | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) | 
						
							| 94 |  | eqeq1 | ⊢ ( 𝑥  =  ( normℎ ‘ 𝐴 )  →  ( 𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) )  ↔  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) | 
						
							| 95 | 94 | anbi2d | ⊢ ( 𝑥  =  ( normℎ ‘ 𝐴 )  →  ( ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) )  ↔  ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 96 | 95 | rexbidv | ⊢ ( 𝑥  =  ( normℎ ‘ 𝐴 )  →  ( ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) )  ↔  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( normℎ ‘ 𝐴 )  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 97 | 39 93 96 | elabd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( normℎ ‘ 𝐴 )  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ) | 
						
							| 98 |  | breq2 | ⊢ ( 𝑤  =  ( normℎ ‘ 𝐴 )  →  ( 𝑧  <  𝑤  ↔  𝑧  <  ( normℎ ‘ 𝐴 ) ) ) | 
						
							| 99 | 98 | rspcev | ⊢ ( ( ( normℎ ‘ 𝐴 )  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) }  ∧  𝑧  <  ( normℎ ‘ 𝐴 ) )  →  ∃ 𝑤  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧  <  𝑤 ) | 
						
							| 100 | 97 99 | sylan | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  ∧  𝑧  <  ( normℎ ‘ 𝐴 ) )  →  ∃ 𝑤  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧  <  𝑤 ) | 
						
							| 101 | 100 | adantlr | ⊢ ( ( ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  ∧  𝑧  ∈  ℝ )  ∧  𝑧  <  ( normℎ ‘ 𝐴 ) )  →  ∃ 𝑤  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧  <  𝑤 ) | 
						
							| 102 | 101 | ex | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  ∧  𝑧  ∈  ℝ )  →  ( 𝑧  <  ( normℎ ‘ 𝐴 )  →  ∃ 𝑤  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧  <  𝑤 ) ) | 
						
							| 103 | 102 | ralrimiva | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ∀ 𝑧  ∈  ℝ ( 𝑧  <  ( normℎ ‘ 𝐴 )  →  ∃ 𝑤  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧  <  𝑤 ) ) | 
						
							| 104 |  | supxr2 | ⊢ ( ( ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) }  ⊆  ℝ*  ∧  ( normℎ ‘ 𝐴 )  ∈  ℝ* )  ∧  ( ∀ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧  ≤  ( normℎ ‘ 𝐴 )  ∧  ∀ 𝑧  ∈  ℝ ( 𝑧  <  ( normℎ ‘ 𝐴 )  →  ∃ 𝑤  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } 𝑧  <  𝑤 ) ) )  →  sup ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ,  ℝ* ,   <  )  =  ( normℎ ‘ 𝐴 ) ) | 
						
							| 105 | 15 37 103 104 | syl12anc | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  sup ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) } ,  ℝ* ,   <  )  =  ( normℎ ‘ 𝐴 ) ) | 
						
							| 106 | 7 105 | eqtrd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( normfn ‘ ( bra ‘ 𝐴 ) )  =  ( normℎ ‘ 𝐴 ) ) | 
						
							| 107 |  | nmfn0 | ⊢ ( normfn ‘ (  ℋ  ×  { 0 } ) )  =  0 | 
						
							| 108 |  | bra0 | ⊢ ( bra ‘ 0ℎ )  =  (  ℋ  ×  { 0 } ) | 
						
							| 109 | 108 | fveq2i | ⊢ ( normfn ‘ ( bra ‘ 0ℎ ) )  =  ( normfn ‘ (  ℋ  ×  { 0 } ) ) | 
						
							| 110 |  | norm0 | ⊢ ( normℎ ‘ 0ℎ )  =  0 | 
						
							| 111 | 107 109 110 | 3eqtr4i | ⊢ ( normfn ‘ ( bra ‘ 0ℎ ) )  =  ( normℎ ‘ 0ℎ ) | 
						
							| 112 | 111 | a1i | ⊢ ( 𝐴  ∈   ℋ  →  ( normfn ‘ ( bra ‘ 0ℎ ) )  =  ( normℎ ‘ 0ℎ ) ) | 
						
							| 113 | 3 106 112 | pm2.61ne | ⊢ ( 𝐴  ∈   ℋ  →  ( normfn ‘ ( bra ‘ 𝐴 ) )  =  ( normℎ ‘ 𝐴 ) ) |