| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
⊢ 𝑓 ∈ V |
| 2 |
1
|
elixp |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 3 |
2
|
simprbi |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
| 4 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 5 |
4
|
sseld |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 6 |
5
|
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 7 |
3 6
|
syl |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 9 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 |
| 10 |
9
|
nfel2 |
⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) |
| 12 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 13 |
8 10 12
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 14 |
7 13
|
sylib |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 16 |
15
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∀ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 17 |
|
eqid |
⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) = ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) |
| 18 |
17
|
fmpo |
⊢ ( ∀ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 19 |
16 18
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 20 |
|
ixpssmap2g |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
| 21 |
20
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
| 22 |
|
ovex |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ∈ V |
| 23 |
22
|
ssex |
⊢ ( X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 24 |
21 23
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 25 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → 𝐴 ∈ 𝑉 ) |
| 26 |
24 25
|
xpexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ∈ V ) |
| 27 |
19 26
|
fexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ∈ V ) |
| 28 |
19
|
ffnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) Fn ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ) |
| 29 |
|
dffn4 |
⊢ ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) Fn ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 30 |
28 29
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 31 |
|
n0 |
⊢ ( X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ) |
| 32 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) |
| 33 |
|
nfixp1 |
⊢ Ⅎ 𝑥 X 𝑥 ∈ 𝐴 𝐵 |
| 34 |
33
|
nfel2 |
⊢ Ⅎ 𝑥 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 |
| 35 |
|
nfv |
⊢ Ⅎ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) |
| 36 |
33 35
|
nfrexw |
⊢ Ⅎ 𝑥 ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) |
| 37 |
|
simplrr |
⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) |
| 38 |
|
iftrue |
⊢ ( 𝑘 = 𝑥 → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) = 𝑧 ) |
| 39 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 40 |
39
|
equcoms |
⊢ ( 𝑘 = 𝑥 → 𝐵 = ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 41 |
40
|
eqcomd |
⊢ ( 𝑘 = 𝑥 → ⦋ 𝑘 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
| 42 |
38 41
|
eleq12d |
⊢ ( 𝑘 = 𝑥 → ( if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
| 43 |
37 42
|
syl5ibrcom |
⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 = 𝑥 → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
| 44 |
|
vex |
⊢ 𝑔 ∈ V |
| 45 |
44
|
elixp |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 46 |
45
|
simprbi |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) |
| 48 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 |
| 49 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 |
| 50 |
49
|
nfel2 |
⊢ Ⅎ 𝑥 ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 |
| 51 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑘 ) ) |
| 52 |
51 39
|
eleq12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
| 53 |
48 50 52
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 54 |
47 53
|
sylib |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 55 |
54
|
r19.21bi |
⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 56 |
|
iffalse |
⊢ ( ¬ 𝑘 = 𝑥 → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) = ( 𝑔 ‘ 𝑘 ) ) |
| 57 |
56
|
eleq1d |
⊢ ( ¬ 𝑘 = 𝑥 → ( if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ↔ ( 𝑔 ‘ 𝑘 ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
| 58 |
55 57
|
syl5ibrcom |
⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ¬ 𝑘 = 𝑥 → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
| 59 |
43 58
|
pm2.61d |
⊢ ( ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 60 |
59
|
ralrimiva |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 61 |
|
ixpfn |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝑔 Fn 𝐴 ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑔 Fn 𝐴 ) |
| 63 |
62
|
fndmd |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → dom 𝑔 = 𝐴 ) |
| 64 |
44
|
dmex |
⊢ dom 𝑔 ∈ V |
| 65 |
63 64
|
eqeltrrdi |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐴 ∈ V ) |
| 66 |
|
mptelixpg |
⊢ ( 𝐴 ∈ V → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ↔ ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
| 67 |
65 66
|
syl |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ↔ ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ∈ ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) ) |
| 68 |
60 67
|
mpbird |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 ) |
| 69 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐵 |
| 70 |
69 49 39
|
cbvixp |
⊢ X 𝑥 ∈ 𝐴 𝐵 = X 𝑘 ∈ 𝐴 ⦋ 𝑘 / 𝑥 ⦌ 𝐵 |
| 71 |
68 70
|
eleqtrrdi |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑥 ∈ 𝐴 𝐵 ) |
| 72 |
|
simprl |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐴 ) |
| 73 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) |
| 74 |
|
vex |
⊢ 𝑧 ∈ V |
| 75 |
38 73 74
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) = 𝑧 ) |
| 76 |
75
|
ad2antrl |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) = 𝑧 ) |
| 77 |
76
|
eqcomd |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) |
| 78 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 ) ) |
| 79 |
78
|
eqeq2d |
⊢ ( 𝑓 = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) → ( 𝑧 = ( 𝑓 ‘ 𝑦 ) ↔ 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 ) ) ) |
| 80 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 ) = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) |
| 81 |
80
|
eqeq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑦 ) ↔ 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) ) |
| 82 |
79 81
|
rspc2ev |
⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 = 𝑥 , 𝑧 , ( 𝑔 ‘ 𝑘 ) ) ) ‘ 𝑥 ) ) → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) |
| 83 |
71 72 77 82
|
syl3anc |
⊢ ( ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) |
| 84 |
83
|
exp32 |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑧 ∈ 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 85 |
34 36 84
|
rexlimd |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 86 |
32 85
|
biimtrid |
⊢ ( 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 87 |
86
|
exlimiv |
⊢ ( ∃ 𝑔 𝑔 ∈ X 𝑥 ∈ 𝐴 𝐵 → ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 88 |
31 87
|
sylbi |
⊢ ( X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 89 |
88
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 90 |
89
|
alrimiv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∀ 𝑧 ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 91 |
|
ssab |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ { 𝑧 ∣ ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) } ↔ ∀ 𝑧 ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 92 |
90 91
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ { 𝑧 ∣ ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) } ) |
| 93 |
17
|
rnmpo |
⊢ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) = { 𝑧 ∣ ∃ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ∃ 𝑦 ∈ 𝐴 𝑧 = ( 𝑓 ‘ 𝑦 ) } |
| 94 |
92 93
|
sseqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 95 |
19
|
frnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 96 |
94 95
|
eqssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 𝐵 = ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) |
| 97 |
|
foeq3 |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 = ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) → ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 98 |
96 97
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ran ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 99 |
30 98
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 100 |
|
fowdom |
⊢ ( ( ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ∈ V ∧ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 , 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) –onto→ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼* ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ) |
| 101 |
27 99 100
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼* ( X 𝑥 ∈ 𝐴 𝐵 × 𝐴 ) ) |