| Step | Hyp | Ref | Expression | 
						
							| 1 |  | line2.i | ⊢ 𝐼  =  { 1 ,  2 } | 
						
							| 2 |  | line2.e | ⊢ 𝐸  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 3 |  | line2.p | ⊢ 𝑃  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 4 |  | line2.l | ⊢ 𝐿  =  ( LineM ‘ 𝐸 ) | 
						
							| 5 |  | line2.g | ⊢ 𝐺  =  { 𝑝  ∈  𝑃  ∣  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶 } | 
						
							| 6 |  | line2x.x | ⊢ 𝑋  =  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } | 
						
							| 7 |  | line2x.y | ⊢ 𝑌  =  { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } | 
						
							| 8 | 5 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  →  𝐺  =  { 𝑝  ∈  𝑃  ∣  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶 } ) | 
						
							| 9 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 10 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 11 | 9 10 | pm3.2i | ⊢ ( 1  ∈  V  ∧  2  ∈  V ) | 
						
							| 12 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 13 | 12 | jctl | ⊢ ( 𝑀  ∈  ℝ  →  ( 0  ∈  V  ∧  𝑀  ∈  ℝ ) ) | 
						
							| 14 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑀  ∈  ℝ  →  1  ≠  2 ) | 
						
							| 16 |  | fprg | ⊢ ( ( ( 1  ∈  V  ∧  2  ∈  V )  ∧  ( 0  ∈  V  ∧  𝑀  ∈  ℝ )  ∧  1  ≠  2 )  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } : { 1 ,  2 } ⟶ { 0 ,  𝑀 } ) | 
						
							| 17 |  | 0red | ⊢ ( ( 1  ∈  V  ∧  2  ∈  V )  →  0  ∈  ℝ ) | 
						
							| 18 |  | simpr | ⊢ ( ( 0  ∈  V  ∧  𝑀  ∈  ℝ )  →  𝑀  ∈  ℝ ) | 
						
							| 19 | 17 18 | anim12i | ⊢ ( ( ( 1  ∈  V  ∧  2  ∈  V )  ∧  ( 0  ∈  V  ∧  𝑀  ∈  ℝ ) )  →  ( 0  ∈  ℝ  ∧  𝑀  ∈  ℝ ) ) | 
						
							| 20 | 19 | 3adant3 | ⊢ ( ( ( 1  ∈  V  ∧  2  ∈  V )  ∧  ( 0  ∈  V  ∧  𝑀  ∈  ℝ )  ∧  1  ≠  2 )  →  ( 0  ∈  ℝ  ∧  𝑀  ∈  ℝ ) ) | 
						
							| 21 |  | prssi | ⊢ ( ( 0  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  { 0 ,  𝑀 }  ⊆  ℝ ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( ( 1  ∈  V  ∧  2  ∈  V )  ∧  ( 0  ∈  V  ∧  𝑀  ∈  ℝ )  ∧  1  ≠  2 )  →  { 0 ,  𝑀 }  ⊆  ℝ ) | 
						
							| 23 | 16 22 | fssd | ⊢ ( ( ( 1  ∈  V  ∧  2  ∈  V )  ∧  ( 0  ∈  V  ∧  𝑀  ∈  ℝ )  ∧  1  ≠  2 )  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 24 | 11 13 15 23 | mp3an2i | ⊢ ( 𝑀  ∈  ℝ  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 25 | 1 | feq2i | ⊢ ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } : 𝐼 ⟶ ℝ  ↔  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 26 | 24 25 | sylibr | ⊢ ( 𝑀  ∈  ℝ  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } : 𝐼 ⟶ ℝ ) | 
						
							| 27 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 28 |  | prex | ⊢ { 1 ,  2 }  ∈  V | 
						
							| 29 | 1 28 | eqeltri | ⊢ 𝐼  ∈  V | 
						
							| 30 | 27 29 | elmap | ⊢ ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 }  ∈  ( ℝ  ↑m  𝐼 )  ↔  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } : 𝐼 ⟶ ℝ ) | 
						
							| 31 | 26 30 | sylibr | ⊢ ( 𝑀  ∈  ℝ  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 }  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 32 | 31 6 3 | 3eltr4g | ⊢ ( 𝑀  ∈  ℝ  →  𝑋  ∈  𝑃 ) | 
						
							| 33 | 9 | jctl | ⊢ ( 𝑀  ∈  ℝ  →  ( 1  ∈  V  ∧  𝑀  ∈  ℝ ) ) | 
						
							| 34 |  | fprg | ⊢ ( ( ( 1  ∈  V  ∧  2  ∈  V )  ∧  ( 1  ∈  V  ∧  𝑀  ∈  ℝ )  ∧  1  ≠  2 )  →  { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } : { 1 ,  2 } ⟶ { 1 ,  𝑀 } ) | 
						
							| 35 | 11 33 15 34 | mp3an2i | ⊢ ( 𝑀  ∈  ℝ  →  { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } : { 1 ,  2 } ⟶ { 1 ,  𝑀 } ) | 
						
							| 36 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 37 |  | prssi | ⊢ ( ( 1  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  { 1 ,  𝑀 }  ⊆  ℝ ) | 
						
							| 38 | 36 37 | mpan | ⊢ ( 𝑀  ∈  ℝ  →  { 1 ,  𝑀 }  ⊆  ℝ ) | 
						
							| 39 | 35 38 | fssd | ⊢ ( 𝑀  ∈  ℝ  →  { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 40 | 1 | feq2i | ⊢ ( { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } : 𝐼 ⟶ ℝ  ↔  { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 41 | 39 40 | sylibr | ⊢ ( 𝑀  ∈  ℝ  →  { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } : 𝐼 ⟶ ℝ ) | 
						
							| 42 | 27 29 | pm3.2i | ⊢ ( ℝ  ∈  V  ∧  𝐼  ∈  V ) | 
						
							| 43 |  | elmapg | ⊢ ( ( ℝ  ∈  V  ∧  𝐼  ∈  V )  →  ( { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 }  ∈  ( ℝ  ↑m  𝐼 )  ↔  { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } : 𝐼 ⟶ ℝ ) ) | 
						
							| 44 | 42 43 | mp1i | ⊢ ( 𝑀  ∈  ℝ  →  ( { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 }  ∈  ( ℝ  ↑m  𝐼 )  ↔  { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } : 𝐼 ⟶ ℝ ) ) | 
						
							| 45 | 41 44 | mpbird | ⊢ ( 𝑀  ∈  ℝ  →  { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 }  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 46 | 45 7 3 | 3eltr4g | ⊢ ( 𝑀  ∈  ℝ  →  𝑌  ∈  𝑃 ) | 
						
							| 47 |  | opex | ⊢ 〈 1 ,  0 〉  ∈  V | 
						
							| 48 |  | opex | ⊢ 〈 2 ,  𝑀 〉  ∈  V | 
						
							| 49 | 47 48 | pm3.2i | ⊢ ( 〈 1 ,  0 〉  ∈  V  ∧  〈 2 ,  𝑀 〉  ∈  V ) | 
						
							| 50 |  | opex | ⊢ 〈 1 ,  1 〉  ∈  V | 
						
							| 51 | 50 48 | pm3.2i | ⊢ ( 〈 1 ,  1 〉  ∈  V  ∧  〈 2 ,  𝑀 〉  ∈  V ) | 
						
							| 52 | 49 51 | pm3.2i | ⊢ ( ( 〈 1 ,  0 〉  ∈  V  ∧  〈 2 ,  𝑀 〉  ∈  V )  ∧  ( 〈 1 ,  1 〉  ∈  V  ∧  〈 2 ,  𝑀 〉  ∈  V ) ) | 
						
							| 53 | 14 | orci | ⊢ ( 1  ≠  2  ∨  0  ≠  𝑀 ) | 
						
							| 54 | 9 12 | opthne | ⊢ ( 〈 1 ,  0 〉  ≠  〈 2 ,  𝑀 〉  ↔  ( 1  ≠  2  ∨  0  ≠  𝑀 ) ) | 
						
							| 55 | 53 54 | mpbir | ⊢ 〈 1 ,  0 〉  ≠  〈 2 ,  𝑀 〉 | 
						
							| 56 | 55 | a1i | ⊢ ( 𝑀  ∈  ℝ  →  〈 1 ,  0 〉  ≠  〈 2 ,  𝑀 〉 ) | 
						
							| 57 |  | 0ne1 | ⊢ 0  ≠  1 | 
						
							| 58 | 57 | olci | ⊢ ( 1  ≠  1  ∨  0  ≠  1 ) | 
						
							| 59 | 9 12 | opthne | ⊢ ( 〈 1 ,  0 〉  ≠  〈 1 ,  1 〉  ↔  ( 1  ≠  1  ∨  0  ≠  1 ) ) | 
						
							| 60 | 58 59 | mpbir | ⊢ 〈 1 ,  0 〉  ≠  〈 1 ,  1 〉 | 
						
							| 61 | 56 60 | jctil | ⊢ ( 𝑀  ∈  ℝ  →  ( 〈 1 ,  0 〉  ≠  〈 1 ,  1 〉  ∧  〈 1 ,  0 〉  ≠  〈 2 ,  𝑀 〉 ) ) | 
						
							| 62 | 61 | orcd | ⊢ ( 𝑀  ∈  ℝ  →  ( ( 〈 1 ,  0 〉  ≠  〈 1 ,  1 〉  ∧  〈 1 ,  0 〉  ≠  〈 2 ,  𝑀 〉 )  ∨  ( 〈 2 ,  𝑀 〉  ≠  〈 1 ,  1 〉  ∧  〈 2 ,  𝑀 〉  ≠  〈 2 ,  𝑀 〉 ) ) ) | 
						
							| 63 |  | prneimg | ⊢ ( ( ( 〈 1 ,  0 〉  ∈  V  ∧  〈 2 ,  𝑀 〉  ∈  V )  ∧  ( 〈 1 ,  1 〉  ∈  V  ∧  〈 2 ,  𝑀 〉  ∈  V ) )  →  ( ( ( 〈 1 ,  0 〉  ≠  〈 1 ,  1 〉  ∧  〈 1 ,  0 〉  ≠  〈 2 ,  𝑀 〉 )  ∨  ( 〈 2 ,  𝑀 〉  ≠  〈 1 ,  1 〉  ∧  〈 2 ,  𝑀 〉  ≠  〈 2 ,  𝑀 〉 ) )  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 }  ≠  { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } ) ) | 
						
							| 64 | 52 62 63 | mpsyl | ⊢ ( 𝑀  ∈  ℝ  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 }  ≠  { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } ) | 
						
							| 65 | 64 6 7 | 3netr4g | ⊢ ( 𝑀  ∈  ℝ  →  𝑋  ≠  𝑌 ) | 
						
							| 66 | 32 46 65 | 3jca | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  →  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) ) | 
						
							| 68 |  | eqid | ⊢ ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  =  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) ) | 
						
							| 69 |  | eqid | ⊢ ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) ) | 
						
							| 70 |  | eqid | ⊢ ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  =  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 71 | 1 2 3 4 68 69 70 | rrx2linest | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) } ) | 
						
							| 72 | 67 71 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) } ) | 
						
							| 73 | 8 72 | eqeq12d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  →  ( 𝐺  =  ( 𝑋 𝐿 𝑌 )  ↔  { 𝑝  ∈  𝑃  ∣  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶 }  =  { 𝑝  ∈  𝑃  ∣  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) } ) ) | 
						
							| 74 |  | rabbi | ⊢ ( ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) )  ↔  { 𝑝  ∈  𝑃  ∣  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶 }  =  { 𝑝  ∈  𝑃  ∣  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) } ) | 
						
							| 75 | 7 | fveq1i | ⊢ ( 𝑌 ‘ 1 )  =  ( { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } ‘ 1 ) | 
						
							| 76 | 9 9 14 | 3pm3.2i | ⊢ ( 1  ∈  V  ∧  1  ∈  V  ∧  1  ≠  2 ) | 
						
							| 77 |  | fvpr1g | ⊢ ( ( 1  ∈  V  ∧  1  ∈  V  ∧  1  ≠  2 )  →  ( { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } ‘ 1 )  =  1 ) | 
						
							| 78 | 76 77 | mp1i | ⊢ ( 𝑀  ∈  ℝ  →  ( { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } ‘ 1 )  =  1 ) | 
						
							| 79 | 75 78 | eqtrid | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑌 ‘ 1 )  =  1 ) | 
						
							| 80 | 6 | fveq1i | ⊢ ( 𝑋 ‘ 1 )  =  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } ‘ 1 ) | 
						
							| 81 | 9 12 14 | 3pm3.2i | ⊢ ( 1  ∈  V  ∧  0  ∈  V  ∧  1  ≠  2 ) | 
						
							| 82 |  | fvpr1g | ⊢ ( ( 1  ∈  V  ∧  0  ∈  V  ∧  1  ≠  2 )  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } ‘ 1 )  =  0 ) | 
						
							| 83 | 81 82 | mp1i | ⊢ ( 𝑀  ∈  ℝ  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } ‘ 1 )  =  0 ) | 
						
							| 84 | 80 83 | eqtrid | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑋 ‘ 1 )  =  0 ) | 
						
							| 85 | 79 84 | oveq12d | ⊢ ( 𝑀  ∈  ℝ  →  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  =  ( 1  −  0 ) ) | 
						
							| 86 |  | 1m0e1 | ⊢ ( 1  −  0 )  =  1 | 
						
							| 87 | 85 86 | eqtrdi | ⊢ ( 𝑀  ∈  ℝ  →  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  =  1 ) | 
						
							| 88 | 87 | oveq1d | ⊢ ( 𝑀  ∈  ℝ  →  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( 1  ·  ( 𝑝 ‘ 2 ) ) ) | 
						
							| 89 | 7 | fveq1i | ⊢ ( 𝑌 ‘ 2 )  =  ( { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } ‘ 2 ) | 
						
							| 90 |  | fvpr2g | ⊢ ( ( 2  ∈  V  ∧  𝑀  ∈  ℝ  ∧  1  ≠  2 )  →  ( { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } ‘ 2 )  =  𝑀 ) | 
						
							| 91 | 10 14 90 | mp3an13 | ⊢ ( 𝑀  ∈  ℝ  →  ( { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } ‘ 2 )  =  𝑀 ) | 
						
							| 92 | 89 91 | eqtrid | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑌 ‘ 2 )  =  𝑀 ) | 
						
							| 93 | 6 | fveq1i | ⊢ ( 𝑋 ‘ 2 )  =  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } ‘ 2 ) | 
						
							| 94 |  | fvpr2g | ⊢ ( ( 2  ∈  V  ∧  𝑀  ∈  ℝ  ∧  1  ≠  2 )  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } ‘ 2 )  =  𝑀 ) | 
						
							| 95 | 10 14 94 | mp3an13 | ⊢ ( 𝑀  ∈  ℝ  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } ‘ 2 )  =  𝑀 ) | 
						
							| 96 | 93 95 | eqtrid | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑋 ‘ 2 )  =  𝑀 ) | 
						
							| 97 | 92 96 | oveq12d | ⊢ ( 𝑀  ∈  ℝ  →  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  ( 𝑀  −  𝑀 ) ) | 
						
							| 98 |  | recn | ⊢ ( 𝑀  ∈  ℝ  →  𝑀  ∈  ℂ ) | 
						
							| 99 | 98 | subidd | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑀  −  𝑀 )  =  0 ) | 
						
							| 100 | 97 99 | eqtrd | ⊢ ( 𝑀  ∈  ℝ  →  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  0 ) | 
						
							| 101 | 100 | oveq1d | ⊢ ( 𝑀  ∈  ℝ  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  ( 0  ·  ( 𝑝 ‘ 1 ) ) ) | 
						
							| 102 | 9 9 15 77 | mp3an12i | ⊢ ( 𝑀  ∈  ℝ  →  ( { 〈 1 ,  1 〉 ,  〈 2 ,  𝑀 〉 } ‘ 1 )  =  1 ) | 
						
							| 103 | 75 102 | eqtrid | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑌 ‘ 1 )  =  1 ) | 
						
							| 104 | 96 103 | oveq12d | ⊢ ( 𝑀  ∈  ℝ  →  ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  =  ( 𝑀  ·  1 ) ) | 
						
							| 105 |  | ax-1rid | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑀  ·  1 )  =  𝑀 ) | 
						
							| 106 | 104 105 | eqtrd | ⊢ ( 𝑀  ∈  ℝ  →  ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  =  𝑀 ) | 
						
							| 107 | 9 12 15 82 | mp3an12i | ⊢ ( 𝑀  ∈  ℝ  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } ‘ 1 )  =  0 ) | 
						
							| 108 | 80 107 | eqtrid | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑋 ‘ 1 )  =  0 ) | 
						
							| 109 | 108 92 | oveq12d | ⊢ ( 𝑀  ∈  ℝ  →  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) )  =  ( 0  ·  𝑀 ) ) | 
						
							| 110 | 98 | mul02d | ⊢ ( 𝑀  ∈  ℝ  →  ( 0  ·  𝑀 )  =  0 ) | 
						
							| 111 | 109 110 | eqtrd | ⊢ ( 𝑀  ∈  ℝ  →  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) )  =  0 ) | 
						
							| 112 | 106 111 | oveq12d | ⊢ ( 𝑀  ∈  ℝ  →  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  =  ( 𝑀  −  0 ) ) | 
						
							| 113 | 98 | subid1d | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑀  −  0 )  =  𝑀 ) | 
						
							| 114 | 112 113 | eqtrd | ⊢ ( 𝑀  ∈  ℝ  →  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  =  𝑀 ) | 
						
							| 115 | 101 114 | oveq12d | ⊢ ( 𝑀  ∈  ℝ  →  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  =  ( ( 0  ·  ( 𝑝 ‘ 1 ) )  +  𝑀 ) ) | 
						
							| 116 | 88 115 | eqeq12d | ⊢ ( 𝑀  ∈  ℝ  →  ( ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 1  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 0  ·  ( 𝑝 ‘ 1 ) )  +  𝑀 ) ) ) | 
						
							| 117 | 116 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  →  ( ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 1  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 0  ·  ( 𝑝 ‘ 1 ) )  +  𝑀 ) ) ) | 
						
							| 118 | 1 3 | rrx2pyel | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 2 )  ∈  ℝ ) | 
						
							| 119 | 118 | recnd | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 2 )  ∈  ℂ ) | 
						
							| 120 | 119 | mullidd | ⊢ ( 𝑝  ∈  𝑃  →  ( 1  ·  ( 𝑝 ‘ 2 ) )  =  ( 𝑝 ‘ 2 ) ) | 
						
							| 121 | 1 3 | rrx2pxel | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 1 )  ∈  ℝ ) | 
						
							| 122 | 121 | recnd | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 1 )  ∈  ℂ ) | 
						
							| 123 | 122 | mul02d | ⊢ ( 𝑝  ∈  𝑃  →  ( 0  ·  ( 𝑝 ‘ 1 ) )  =  0 ) | 
						
							| 124 | 123 | oveq1d | ⊢ ( 𝑝  ∈  𝑃  →  ( ( 0  ·  ( 𝑝 ‘ 1 ) )  +  𝑀 )  =  ( 0  +  𝑀 ) ) | 
						
							| 125 | 120 124 | eqeq12d | ⊢ ( 𝑝  ∈  𝑃  →  ( ( 1  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 0  ·  ( 𝑝 ‘ 1 ) )  +  𝑀 )  ↔  ( 𝑝 ‘ 2 )  =  ( 0  +  𝑀 ) ) ) | 
						
							| 126 | 117 125 | sylan9bb | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝑝 ‘ 2 )  =  ( 0  +  𝑀 ) ) ) | 
						
							| 127 | 126 | bibi2d | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) )  ↔  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 2 )  =  ( 0  +  𝑀 ) ) ) ) | 
						
							| 128 | 127 | ralbidva | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  →  ( ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) )  ↔  ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 2 )  =  ( 0  +  𝑀 ) ) ) ) | 
						
							| 129 | 98 | addlidd | ⊢ ( 𝑀  ∈  ℝ  →  ( 0  +  𝑀 )  =  𝑀 ) | 
						
							| 130 | 129 | adantr | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑝  ∈  𝑃 )  →  ( 0  +  𝑀 )  =  𝑀 ) | 
						
							| 131 | 130 | eqeq2d | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑝 ‘ 2 )  =  ( 0  +  𝑀 )  ↔  ( 𝑝 ‘ 2 )  =  𝑀 ) ) | 
						
							| 132 | 131 | bibi2d | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 2 )  =  ( 0  +  𝑀 ) )  ↔  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 2 )  =  𝑀 ) ) ) | 
						
							| 133 | 132 | ralbidva | ⊢ ( 𝑀  ∈  ℝ  →  ( ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 2 )  =  ( 0  +  𝑀 ) )  ↔  ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 2 )  =  𝑀 ) ) ) | 
						
							| 134 | 133 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  →  ( ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 2 )  =  ( 0  +  𝑀 ) )  ↔  ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 2 )  =  𝑀 ) ) ) | 
						
							| 135 | 1 2 3 4 5 6 7 | line2xlem | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  →  ( ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 2 )  =  𝑀 )  →  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) ) ) | 
						
							| 136 |  | oveq1 | ⊢ ( 𝐴  =  0  →  ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  =  ( 0  ·  ( 𝑝 ‘ 1 ) ) ) | 
						
							| 137 | 136 | adantr | ⊢ ( ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) )  →  ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  =  ( 0  ·  ( 𝑝 ‘ 1 ) ) ) | 
						
							| 138 | 137 | ad2antlr | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  =  ( 0  ·  ( 𝑝 ‘ 1 ) ) ) | 
						
							| 139 | 123 | adantl | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  ( 0  ·  ( 𝑝 ‘ 1 ) )  =  0 ) | 
						
							| 140 | 138 139 | eqtrd | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  =  0 ) | 
						
							| 141 | 140 | oveq1d | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  ( 0  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) ) ) | 
						
							| 142 |  | recn | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℂ ) | 
						
							| 143 | 142 | adantr | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  →  𝐵  ∈  ℂ ) | 
						
							| 144 | 143 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  →  𝐵  ∈  ℂ ) | 
						
							| 145 | 144 | ad3antrrr | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  𝐵  ∈  ℂ ) | 
						
							| 146 | 119 | adantl | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑝 ‘ 2 )  ∈  ℂ ) | 
						
							| 147 | 145 146 | mulcld | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝐵  ·  ( 𝑝 ‘ 2 ) )  ∈  ℂ ) | 
						
							| 148 | 147 | addlidd | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  ( 0  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) ) | 
						
							| 149 | 141 148 | eqtrd | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) ) | 
						
							| 150 | 149 | eqeq1d | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝐵  ·  ( 𝑝 ‘ 2 ) )  =  𝐶 ) ) | 
						
							| 151 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  →  𝐶  ∈  ℝ ) | 
						
							| 152 | 151 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  →  𝐶  ∈  ℂ ) | 
						
							| 153 | 152 | ad3antrrr | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  𝐶  ∈  ℂ ) | 
						
							| 154 |  | simpl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  →  𝐵  ∈  ℝ ) | 
						
							| 155 | 154 | recnd | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  →  𝐵  ∈  ℂ ) | 
						
							| 156 | 155 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  →  𝐵  ∈  ℂ ) | 
						
							| 157 | 156 | ad3antrrr | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  𝐵  ∈  ℂ ) | 
						
							| 158 |  | simp2r | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  →  𝐵  ≠  0 ) | 
						
							| 159 | 158 | ad3antrrr | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  𝐵  ≠  0 ) | 
						
							| 160 | 153 157 146 159 | divmuld | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝐶  /  𝐵 )  =  ( 𝑝 ‘ 2 )  ↔  ( 𝐵  ·  ( 𝑝 ‘ 2 ) )  =  𝐶 ) ) | 
						
							| 161 |  | simpr | ⊢ ( ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) )  →  𝑀  =  ( 𝐶  /  𝐵 ) ) | 
						
							| 162 | 161 | eqcomd | ⊢ ( ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) )  →  ( 𝐶  /  𝐵 )  =  𝑀 ) | 
						
							| 163 | 162 | ad2antlr | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝐶  /  𝐵 )  =  𝑀 ) | 
						
							| 164 | 163 | eqeq1d | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝐶  /  𝐵 )  =  ( 𝑝 ‘ 2 )  ↔  𝑀  =  ( 𝑝 ‘ 2 ) ) ) | 
						
							| 165 | 150 160 164 | 3bitr2d | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  𝑀  =  ( 𝑝 ‘ 2 ) ) ) | 
						
							| 166 |  | eqcom | ⊢ ( 𝑀  =  ( 𝑝 ‘ 2 )  ↔  ( 𝑝 ‘ 2 )  =  𝑀 ) | 
						
							| 167 | 165 166 | bitrdi | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 2 )  =  𝑀 ) ) | 
						
							| 168 | 167 | ralrimiva | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  ∧  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) )  →  ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 2 )  =  𝑀 ) ) | 
						
							| 169 | 168 | ex | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  →  ( ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) )  →  ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 2 )  =  𝑀 ) ) ) | 
						
							| 170 | 135 169 | impbid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  →  ( ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 2 )  =  𝑀 )  ↔  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) ) ) | 
						
							| 171 | 128 134 170 | 3bitrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  →  ( ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) )  ↔  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) ) ) | 
						
							| 172 | 74 171 | bitr3id | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  →  ( { 𝑝  ∈  𝑃  ∣  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶 }  =  { 𝑝  ∈  𝑃  ∣  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) }  ↔  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) ) ) | 
						
							| 173 | 73 172 | bitrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℝ )  ∧  𝑀  ∈  ℝ )  →  ( 𝐺  =  ( 𝑋 𝐿 𝑌 )  ↔  ( 𝐴  =  0  ∧  𝑀  =  ( 𝐶  /  𝐵 ) ) ) ) |