Step |
Hyp |
Ref |
Expression |
1 |
|
line2.i |
⊢ 𝐼 = { 1 , 2 } |
2 |
|
line2.e |
⊢ 𝐸 = ( ℝ^ ‘ 𝐼 ) |
3 |
|
line2.p |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
4 |
|
line2.l |
⊢ 𝐿 = ( LineM ‘ 𝐸 ) |
5 |
|
line2.g |
⊢ 𝐺 = { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } |
6 |
|
line2x.x |
⊢ 𝑋 = { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } |
7 |
|
line2x.y |
⊢ 𝑌 = { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } |
8 |
5
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → 𝐺 = { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } ) |
9 |
|
1ex |
⊢ 1 ∈ V |
10 |
|
2ex |
⊢ 2 ∈ V |
11 |
9 10
|
pm3.2i |
⊢ ( 1 ∈ V ∧ 2 ∈ V ) |
12 |
|
c0ex |
⊢ 0 ∈ V |
13 |
12
|
jctl |
⊢ ( 𝑀 ∈ ℝ → ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ) |
14 |
|
1ne2 |
⊢ 1 ≠ 2 |
15 |
14
|
a1i |
⊢ ( 𝑀 ∈ ℝ → 1 ≠ 2 ) |
16 |
|
fprg |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ { 0 , 𝑀 } ) |
17 |
|
0red |
⊢ ( ( 1 ∈ V ∧ 2 ∈ V ) → 0 ∈ ℝ ) |
18 |
|
simpr |
⊢ ( ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) → 𝑀 ∈ ℝ ) |
19 |
17 18
|
anim12i |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ) → ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
20 |
19
|
3adant3 |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
21 |
|
prssi |
⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → { 0 , 𝑀 } ⊆ ℝ ) |
22 |
20 21
|
syl |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → { 0 , 𝑀 } ⊆ ℝ ) |
23 |
16 22
|
fssd |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ ℝ ) |
24 |
11 13 15 23
|
mp3an2i |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ ℝ ) |
25 |
1
|
feq2i |
⊢ ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ↔ { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ ℝ ) |
26 |
24 25
|
sylibr |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ) |
27 |
|
reex |
⊢ ℝ ∈ V |
28 |
|
prex |
⊢ { 1 , 2 } ∈ V |
29 |
1 28
|
eqeltri |
⊢ 𝐼 ∈ V |
30 |
27 29
|
elmap |
⊢ ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ∈ ( ℝ ↑m 𝐼 ) ↔ { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ) |
31 |
26 30
|
sylibr |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ∈ ( ℝ ↑m 𝐼 ) ) |
32 |
31 6 3
|
3eltr4g |
⊢ ( 𝑀 ∈ ℝ → 𝑋 ∈ 𝑃 ) |
33 |
9
|
jctl |
⊢ ( 𝑀 ∈ ℝ → ( 1 ∈ V ∧ 𝑀 ∈ ℝ ) ) |
34 |
|
fprg |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 1 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ { 1 , 𝑀 } ) |
35 |
11 33 15 34
|
mp3an2i |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ { 1 , 𝑀 } ) |
36 |
|
1re |
⊢ 1 ∈ ℝ |
37 |
|
prssi |
⊢ ( ( 1 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → { 1 , 𝑀 } ⊆ ℝ ) |
38 |
36 37
|
mpan |
⊢ ( 𝑀 ∈ ℝ → { 1 , 𝑀 } ⊆ ℝ ) |
39 |
35 38
|
fssd |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ ℝ ) |
40 |
1
|
feq2i |
⊢ ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ↔ { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ ℝ ) |
41 |
39 40
|
sylibr |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ) |
42 |
27 29
|
pm3.2i |
⊢ ( ℝ ∈ V ∧ 𝐼 ∈ V ) |
43 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝐼 ∈ V ) → ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ∈ ( ℝ ↑m 𝐼 ) ↔ { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ) ) |
44 |
42 43
|
mp1i |
⊢ ( 𝑀 ∈ ℝ → ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ∈ ( ℝ ↑m 𝐼 ) ↔ { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ) ) |
45 |
41 44
|
mpbird |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ∈ ( ℝ ↑m 𝐼 ) ) |
46 |
45 7 3
|
3eltr4g |
⊢ ( 𝑀 ∈ ℝ → 𝑌 ∈ 𝑃 ) |
47 |
|
opex |
⊢ 〈 1 , 0 〉 ∈ V |
48 |
|
opex |
⊢ 〈 2 , 𝑀 〉 ∈ V |
49 |
47 48
|
pm3.2i |
⊢ ( 〈 1 , 0 〉 ∈ V ∧ 〈 2 , 𝑀 〉 ∈ V ) |
50 |
|
opex |
⊢ 〈 1 , 1 〉 ∈ V |
51 |
50 48
|
pm3.2i |
⊢ ( 〈 1 , 1 〉 ∈ V ∧ 〈 2 , 𝑀 〉 ∈ V ) |
52 |
49 51
|
pm3.2i |
⊢ ( ( 〈 1 , 0 〉 ∈ V ∧ 〈 2 , 𝑀 〉 ∈ V ) ∧ ( 〈 1 , 1 〉 ∈ V ∧ 〈 2 , 𝑀 〉 ∈ V ) ) |
53 |
14
|
orci |
⊢ ( 1 ≠ 2 ∨ 0 ≠ 𝑀 ) |
54 |
9 12
|
opthne |
⊢ ( 〈 1 , 0 〉 ≠ 〈 2 , 𝑀 〉 ↔ ( 1 ≠ 2 ∨ 0 ≠ 𝑀 ) ) |
55 |
53 54
|
mpbir |
⊢ 〈 1 , 0 〉 ≠ 〈 2 , 𝑀 〉 |
56 |
55
|
a1i |
⊢ ( 𝑀 ∈ ℝ → 〈 1 , 0 〉 ≠ 〈 2 , 𝑀 〉 ) |
57 |
|
0ne1 |
⊢ 0 ≠ 1 |
58 |
57
|
olci |
⊢ ( 1 ≠ 1 ∨ 0 ≠ 1 ) |
59 |
9 12
|
opthne |
⊢ ( 〈 1 , 0 〉 ≠ 〈 1 , 1 〉 ↔ ( 1 ≠ 1 ∨ 0 ≠ 1 ) ) |
60 |
58 59
|
mpbir |
⊢ 〈 1 , 0 〉 ≠ 〈 1 , 1 〉 |
61 |
56 60
|
jctil |
⊢ ( 𝑀 ∈ ℝ → ( 〈 1 , 0 〉 ≠ 〈 1 , 1 〉 ∧ 〈 1 , 0 〉 ≠ 〈 2 , 𝑀 〉 ) ) |
62 |
61
|
orcd |
⊢ ( 𝑀 ∈ ℝ → ( ( 〈 1 , 0 〉 ≠ 〈 1 , 1 〉 ∧ 〈 1 , 0 〉 ≠ 〈 2 , 𝑀 〉 ) ∨ ( 〈 2 , 𝑀 〉 ≠ 〈 1 , 1 〉 ∧ 〈 2 , 𝑀 〉 ≠ 〈 2 , 𝑀 〉 ) ) ) |
63 |
|
prneimg |
⊢ ( ( ( 〈 1 , 0 〉 ∈ V ∧ 〈 2 , 𝑀 〉 ∈ V ) ∧ ( 〈 1 , 1 〉 ∈ V ∧ 〈 2 , 𝑀 〉 ∈ V ) ) → ( ( ( 〈 1 , 0 〉 ≠ 〈 1 , 1 〉 ∧ 〈 1 , 0 〉 ≠ 〈 2 , 𝑀 〉 ) ∨ ( 〈 2 , 𝑀 〉 ≠ 〈 1 , 1 〉 ∧ 〈 2 , 𝑀 〉 ≠ 〈 2 , 𝑀 〉 ) ) → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ≠ { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ) ) |
64 |
52 62 63
|
mpsyl |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ≠ { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ) |
65 |
64 6 7
|
3netr4g |
⊢ ( 𝑀 ∈ ℝ → 𝑋 ≠ 𝑌 ) |
66 |
32 46 65
|
3jca |
⊢ ( 𝑀 ∈ ℝ → ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) |
67 |
66
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) |
68 |
|
eqid |
⊢ ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) = ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) |
69 |
|
eqid |
⊢ ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) = ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) |
70 |
|
eqid |
⊢ ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) = ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) |
71 |
1 2 3 4 68 69 70
|
rrx2linest |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) } ) |
72 |
67 71
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) } ) |
73 |
8 72
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( 𝐺 = ( 𝑋 𝐿 𝑌 ) ↔ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } = { 𝑝 ∈ 𝑃 ∣ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) } ) ) |
74 |
|
rabbi |
⊢ ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ) ↔ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } = { 𝑝 ∈ 𝑃 ∣ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) } ) |
75 |
7
|
fveq1i |
⊢ ( 𝑌 ‘ 1 ) = ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) |
76 |
9 9 14
|
3pm3.2i |
⊢ ( 1 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2 ) |
77 |
|
fvpr1g |
⊢ ( ( 1 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2 ) → ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 1 ) |
78 |
76 77
|
mp1i |
⊢ ( 𝑀 ∈ ℝ → ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 1 ) |
79 |
75 78
|
syl5eq |
⊢ ( 𝑀 ∈ ℝ → ( 𝑌 ‘ 1 ) = 1 ) |
80 |
6
|
fveq1i |
⊢ ( 𝑋 ‘ 1 ) = ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) |
81 |
9 12 14
|
3pm3.2i |
⊢ ( 1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2 ) |
82 |
|
fvpr1g |
⊢ ( ( 1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2 ) → ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 0 ) |
83 |
81 82
|
mp1i |
⊢ ( 𝑀 ∈ ℝ → ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 0 ) |
84 |
80 83
|
syl5eq |
⊢ ( 𝑀 ∈ ℝ → ( 𝑋 ‘ 1 ) = 0 ) |
85 |
79 84
|
oveq12d |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) = ( 1 − 0 ) ) |
86 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
87 |
85 86
|
eqtrdi |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) = 1 ) |
88 |
87
|
oveq1d |
⊢ ( 𝑀 ∈ ℝ → ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( 1 · ( 𝑝 ‘ 2 ) ) ) |
89 |
7
|
fveq1i |
⊢ ( 𝑌 ‘ 2 ) = ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) |
90 |
|
fvpr2g |
⊢ ( ( 2 ∈ V ∧ 𝑀 ∈ ℝ ∧ 1 ≠ 2 ) → ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) = 𝑀 ) |
91 |
10 14 90
|
mp3an13 |
⊢ ( 𝑀 ∈ ℝ → ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) = 𝑀 ) |
92 |
89 91
|
syl5eq |
⊢ ( 𝑀 ∈ ℝ → ( 𝑌 ‘ 2 ) = 𝑀 ) |
93 |
6
|
fveq1i |
⊢ ( 𝑋 ‘ 2 ) = ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) |
94 |
|
fvpr2g |
⊢ ( ( 2 ∈ V ∧ 𝑀 ∈ ℝ ∧ 1 ≠ 2 ) → ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) = 𝑀 ) |
95 |
10 14 94
|
mp3an13 |
⊢ ( 𝑀 ∈ ℝ → ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) = 𝑀 ) |
96 |
93 95
|
syl5eq |
⊢ ( 𝑀 ∈ ℝ → ( 𝑋 ‘ 2 ) = 𝑀 ) |
97 |
92 96
|
oveq12d |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) = ( 𝑀 − 𝑀 ) ) |
98 |
|
recn |
⊢ ( 𝑀 ∈ ℝ → 𝑀 ∈ ℂ ) |
99 |
98
|
subidd |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 𝑀 ) = 0 ) |
100 |
97 99
|
eqtrd |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) = 0 ) |
101 |
100
|
oveq1d |
⊢ ( 𝑀 ∈ ℝ → ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) = ( 0 · ( 𝑝 ‘ 1 ) ) ) |
102 |
9 9 15 77
|
mp3an12i |
⊢ ( 𝑀 ∈ ℝ → ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 1 ) |
103 |
75 102
|
syl5eq |
⊢ ( 𝑀 ∈ ℝ → ( 𝑌 ‘ 1 ) = 1 ) |
104 |
96 103
|
oveq12d |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) = ( 𝑀 · 1 ) ) |
105 |
|
ax-1rid |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 · 1 ) = 𝑀 ) |
106 |
104 105
|
eqtrd |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) = 𝑀 ) |
107 |
9 12 15 82
|
mp3an12i |
⊢ ( 𝑀 ∈ ℝ → ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 0 ) |
108 |
80 107
|
syl5eq |
⊢ ( 𝑀 ∈ ℝ → ( 𝑋 ‘ 1 ) = 0 ) |
109 |
108 92
|
oveq12d |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) = ( 0 · 𝑀 ) ) |
110 |
98
|
mul02d |
⊢ ( 𝑀 ∈ ℝ → ( 0 · 𝑀 ) = 0 ) |
111 |
109 110
|
eqtrd |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) = 0 ) |
112 |
106 111
|
oveq12d |
⊢ ( 𝑀 ∈ ℝ → ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) = ( 𝑀 − 0 ) ) |
113 |
98
|
subid1d |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 0 ) = 𝑀 ) |
114 |
112 113
|
eqtrd |
⊢ ( 𝑀 ∈ ℝ → ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) = 𝑀 ) |
115 |
101 114
|
oveq12d |
⊢ ( 𝑀 ∈ ℝ → ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) = ( ( 0 · ( 𝑝 ‘ 1 ) ) + 𝑀 ) ) |
116 |
88 115
|
eqeq12d |
⊢ ( 𝑀 ∈ ℝ → ( ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ↔ ( 1 · ( 𝑝 ‘ 2 ) ) = ( ( 0 · ( 𝑝 ‘ 1 ) ) + 𝑀 ) ) ) |
117 |
116
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ↔ ( 1 · ( 𝑝 ‘ 2 ) ) = ( ( 0 · ( 𝑝 ‘ 1 ) ) + 𝑀 ) ) ) |
118 |
1 3
|
rrx2pyel |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 2 ) ∈ ℝ ) |
119 |
118
|
recnd |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 2 ) ∈ ℂ ) |
120 |
119
|
mulid2d |
⊢ ( 𝑝 ∈ 𝑃 → ( 1 · ( 𝑝 ‘ 2 ) ) = ( 𝑝 ‘ 2 ) ) |
121 |
1 3
|
rrx2pxel |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 1 ) ∈ ℝ ) |
122 |
121
|
recnd |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 1 ) ∈ ℂ ) |
123 |
122
|
mul02d |
⊢ ( 𝑝 ∈ 𝑃 → ( 0 · ( 𝑝 ‘ 1 ) ) = 0 ) |
124 |
123
|
oveq1d |
⊢ ( 𝑝 ∈ 𝑃 → ( ( 0 · ( 𝑝 ‘ 1 ) ) + 𝑀 ) = ( 0 + 𝑀 ) ) |
125 |
120 124
|
eqeq12d |
⊢ ( 𝑝 ∈ 𝑃 → ( ( 1 · ( 𝑝 ‘ 2 ) ) = ( ( 0 · ( 𝑝 ‘ 1 ) ) + 𝑀 ) ↔ ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ) ) |
126 |
117 125
|
sylan9bb |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ↔ ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ) ) |
127 |
126
|
bibi2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ) ↔ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ) ) ) |
128 |
127
|
ralbidva |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ) ↔ ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ) ) ) |
129 |
98
|
addid2d |
⊢ ( 𝑀 ∈ ℝ → ( 0 + 𝑀 ) = 𝑀 ) |
130 |
129
|
adantr |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑝 ∈ 𝑃 ) → ( 0 + 𝑀 ) = 𝑀 ) |
131 |
130
|
eqeq2d |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ) |
132 |
131
|
bibi2d |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑝 ∈ 𝑃 ) → ( ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ) ↔ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ) ) |
133 |
132
|
ralbidva |
⊢ ( 𝑀 ∈ ℝ → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ) ↔ ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ) ) |
134 |
133
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ) ↔ ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ) ) |
135 |
1 2 3 4 5 6 7
|
line2xlem |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) → ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ) |
136 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 · ( 𝑝 ‘ 1 ) ) = ( 0 · ( 𝑝 ‘ 1 ) ) ) |
137 |
136
|
adantr |
⊢ ( ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) → ( 𝐴 · ( 𝑝 ‘ 1 ) ) = ( 0 · ( 𝑝 ‘ 1 ) ) ) |
138 |
137
|
ad2antlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝐴 · ( 𝑝 ‘ 1 ) ) = ( 0 · ( 𝑝 ‘ 1 ) ) ) |
139 |
123
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 0 · ( 𝑝 ‘ 1 ) ) = 0 ) |
140 |
138 139
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝐴 · ( 𝑝 ‘ 1 ) ) = 0 ) |
141 |
140
|
oveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = ( 0 + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) ) |
142 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
143 |
142
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
144 |
143
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
145 |
144
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → 𝐵 ∈ ℂ ) |
146 |
119
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑝 ‘ 2 ) ∈ ℂ ) |
147 |
145 146
|
mulcld |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝐵 · ( 𝑝 ‘ 2 ) ) ∈ ℂ ) |
148 |
147
|
addid2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 0 + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) |
149 |
141 148
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) |
150 |
149
|
eqeq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝐵 · ( 𝑝 ‘ 2 ) ) = 𝐶 ) ) |
151 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
152 |
151
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℂ ) |
153 |
152
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → 𝐶 ∈ ℂ ) |
154 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℝ ) |
155 |
154
|
recnd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
156 |
155
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
157 |
156
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → 𝐵 ∈ ℂ ) |
158 |
|
simp2r |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) → 𝐵 ≠ 0 ) |
159 |
158
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → 𝐵 ≠ 0 ) |
160 |
153 157 146 159
|
divmuld |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐶 / 𝐵 ) = ( 𝑝 ‘ 2 ) ↔ ( 𝐵 · ( 𝑝 ‘ 2 ) ) = 𝐶 ) ) |
161 |
|
simpr |
⊢ ( ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) → 𝑀 = ( 𝐶 / 𝐵 ) ) |
162 |
161
|
eqcomd |
⊢ ( ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) → ( 𝐶 / 𝐵 ) = 𝑀 ) |
163 |
162
|
ad2antlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝐶 / 𝐵 ) = 𝑀 ) |
164 |
163
|
eqeq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐶 / 𝐵 ) = ( 𝑝 ‘ 2 ) ↔ 𝑀 = ( 𝑝 ‘ 2 ) ) ) |
165 |
150 160 164
|
3bitr2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ 𝑀 = ( 𝑝 ‘ 2 ) ) ) |
166 |
|
eqcom |
⊢ ( 𝑀 = ( 𝑝 ‘ 2 ) ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) |
167 |
165 166
|
bitrdi |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ) |
168 |
167
|
ralrimiva |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) → ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ) |
169 |
168
|
ex |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) → ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ) ) |
170 |
135 169
|
impbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ↔ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ) |
171 |
128 134 170
|
3bitrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ) ↔ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ) |
172 |
74 171
|
bitr3id |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } = { 𝑝 ∈ 𝑃 ∣ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) } ↔ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ) |
173 |
73 172
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( 𝐺 = ( 𝑋 𝐿 𝑌 ) ↔ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ) |