| Step | Hyp | Ref | Expression | 
						
							| 1 |  | line2.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | line2.e |  |-  E = ( RR^ ` I ) | 
						
							| 3 |  | line2.p |  |-  P = ( RR ^m I ) | 
						
							| 4 |  | line2.l |  |-  L = ( LineM ` E ) | 
						
							| 5 |  | line2.g |  |-  G = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } | 
						
							| 6 |  | line2x.x |  |-  X = { <. 1 , 0 >. , <. 2 , M >. } | 
						
							| 7 |  | line2x.y |  |-  Y = { <. 1 , 1 >. , <. 2 , M >. } | 
						
							| 8 | 5 | a1i |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> G = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) | 
						
							| 9 |  | 1ex |  |-  1 e. _V | 
						
							| 10 |  | 2ex |  |-  2 e. _V | 
						
							| 11 | 9 10 | pm3.2i |  |-  ( 1 e. _V /\ 2 e. _V ) | 
						
							| 12 |  | c0ex |  |-  0 e. _V | 
						
							| 13 | 12 | jctl |  |-  ( M e. RR -> ( 0 e. _V /\ M e. RR ) ) | 
						
							| 14 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 15 | 14 | a1i |  |-  ( M e. RR -> 1 =/= 2 ) | 
						
							| 16 |  | fprg |  |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> { 0 , M } ) | 
						
							| 17 |  | 0red |  |-  ( ( 1 e. _V /\ 2 e. _V ) -> 0 e. RR ) | 
						
							| 18 |  | simpr |  |-  ( ( 0 e. _V /\ M e. RR ) -> M e. RR ) | 
						
							| 19 | 17 18 | anim12i |  |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) ) -> ( 0 e. RR /\ M e. RR ) ) | 
						
							| 20 | 19 | 3adant3 |  |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> ( 0 e. RR /\ M e. RR ) ) | 
						
							| 21 |  | prssi |  |-  ( ( 0 e. RR /\ M e. RR ) -> { 0 , M } C_ RR ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { 0 , M } C_ RR ) | 
						
							| 23 | 16 22 | fssd |  |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) | 
						
							| 24 | 11 13 15 23 | mp3an2i |  |-  ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) | 
						
							| 25 | 1 | feq2i |  |-  ( { <. 1 , 0 >. , <. 2 , M >. } : I --> RR <-> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) | 
						
							| 26 | 24 25 | sylibr |  |-  ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } : I --> RR ) | 
						
							| 27 |  | reex |  |-  RR e. _V | 
						
							| 28 |  | prex |  |-  { 1 , 2 } e. _V | 
						
							| 29 | 1 28 | eqeltri |  |-  I e. _V | 
						
							| 30 | 27 29 | elmap |  |-  ( { <. 1 , 0 >. , <. 2 , M >. } e. ( RR ^m I ) <-> { <. 1 , 0 >. , <. 2 , M >. } : I --> RR ) | 
						
							| 31 | 26 30 | sylibr |  |-  ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } e. ( RR ^m I ) ) | 
						
							| 32 | 31 6 3 | 3eltr4g |  |-  ( M e. RR -> X e. P ) | 
						
							| 33 | 9 | jctl |  |-  ( M e. RR -> ( 1 e. _V /\ M e. RR ) ) | 
						
							| 34 |  | fprg |  |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 1 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 1 >. , <. 2 , M >. } : { 1 , 2 } --> { 1 , M } ) | 
						
							| 35 | 11 33 15 34 | mp3an2i |  |-  ( M e. RR -> { <. 1 , 1 >. , <. 2 , M >. } : { 1 , 2 } --> { 1 , M } ) | 
						
							| 36 |  | 1re |  |-  1 e. RR | 
						
							| 37 |  | prssi |  |-  ( ( 1 e. RR /\ M e. RR ) -> { 1 , M } C_ RR ) | 
						
							| 38 | 36 37 | mpan |  |-  ( M e. RR -> { 1 , M } C_ RR ) | 
						
							| 39 | 35 38 | fssd |  |-  ( M e. RR -> { <. 1 , 1 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) | 
						
							| 40 | 1 | feq2i |  |-  ( { <. 1 , 1 >. , <. 2 , M >. } : I --> RR <-> { <. 1 , 1 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) | 
						
							| 41 | 39 40 | sylibr |  |-  ( M e. RR -> { <. 1 , 1 >. , <. 2 , M >. } : I --> RR ) | 
						
							| 42 | 27 29 | pm3.2i |  |-  ( RR e. _V /\ I e. _V ) | 
						
							| 43 |  | elmapg |  |-  ( ( RR e. _V /\ I e. _V ) -> ( { <. 1 , 1 >. , <. 2 , M >. } e. ( RR ^m I ) <-> { <. 1 , 1 >. , <. 2 , M >. } : I --> RR ) ) | 
						
							| 44 | 42 43 | mp1i |  |-  ( M e. RR -> ( { <. 1 , 1 >. , <. 2 , M >. } e. ( RR ^m I ) <-> { <. 1 , 1 >. , <. 2 , M >. } : I --> RR ) ) | 
						
							| 45 | 41 44 | mpbird |  |-  ( M e. RR -> { <. 1 , 1 >. , <. 2 , M >. } e. ( RR ^m I ) ) | 
						
							| 46 | 45 7 3 | 3eltr4g |  |-  ( M e. RR -> Y e. P ) | 
						
							| 47 |  | opex |  |-  <. 1 , 0 >. e. _V | 
						
							| 48 |  | opex |  |-  <. 2 , M >. e. _V | 
						
							| 49 | 47 48 | pm3.2i |  |-  ( <. 1 , 0 >. e. _V /\ <. 2 , M >. e. _V ) | 
						
							| 50 |  | opex |  |-  <. 1 , 1 >. e. _V | 
						
							| 51 | 50 48 | pm3.2i |  |-  ( <. 1 , 1 >. e. _V /\ <. 2 , M >. e. _V ) | 
						
							| 52 | 49 51 | pm3.2i |  |-  ( ( <. 1 , 0 >. e. _V /\ <. 2 , M >. e. _V ) /\ ( <. 1 , 1 >. e. _V /\ <. 2 , M >. e. _V ) ) | 
						
							| 53 | 14 | orci |  |-  ( 1 =/= 2 \/ 0 =/= M ) | 
						
							| 54 | 9 12 | opthne |  |-  ( <. 1 , 0 >. =/= <. 2 , M >. <-> ( 1 =/= 2 \/ 0 =/= M ) ) | 
						
							| 55 | 53 54 | mpbir |  |-  <. 1 , 0 >. =/= <. 2 , M >. | 
						
							| 56 | 55 | a1i |  |-  ( M e. RR -> <. 1 , 0 >. =/= <. 2 , M >. ) | 
						
							| 57 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 58 | 57 | olci |  |-  ( 1 =/= 1 \/ 0 =/= 1 ) | 
						
							| 59 | 9 12 | opthne |  |-  ( <. 1 , 0 >. =/= <. 1 , 1 >. <-> ( 1 =/= 1 \/ 0 =/= 1 ) ) | 
						
							| 60 | 58 59 | mpbir |  |-  <. 1 , 0 >. =/= <. 1 , 1 >. | 
						
							| 61 | 56 60 | jctil |  |-  ( M e. RR -> ( <. 1 , 0 >. =/= <. 1 , 1 >. /\ <. 1 , 0 >. =/= <. 2 , M >. ) ) | 
						
							| 62 | 61 | orcd |  |-  ( M e. RR -> ( ( <. 1 , 0 >. =/= <. 1 , 1 >. /\ <. 1 , 0 >. =/= <. 2 , M >. ) \/ ( <. 2 , M >. =/= <. 1 , 1 >. /\ <. 2 , M >. =/= <. 2 , M >. ) ) ) | 
						
							| 63 |  | prneimg |  |-  ( ( ( <. 1 , 0 >. e. _V /\ <. 2 , M >. e. _V ) /\ ( <. 1 , 1 >. e. _V /\ <. 2 , M >. e. _V ) ) -> ( ( ( <. 1 , 0 >. =/= <. 1 , 1 >. /\ <. 1 , 0 >. =/= <. 2 , M >. ) \/ ( <. 2 , M >. =/= <. 1 , 1 >. /\ <. 2 , M >. =/= <. 2 , M >. ) ) -> { <. 1 , 0 >. , <. 2 , M >. } =/= { <. 1 , 1 >. , <. 2 , M >. } ) ) | 
						
							| 64 | 52 62 63 | mpsyl |  |-  ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } =/= { <. 1 , 1 >. , <. 2 , M >. } ) | 
						
							| 65 | 64 6 7 | 3netr4g |  |-  ( M e. RR -> X =/= Y ) | 
						
							| 66 | 32 46 65 | 3jca |  |-  ( M e. RR -> ( X e. P /\ Y e. P /\ X =/= Y ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( X e. P /\ Y e. P /\ X =/= Y ) ) | 
						
							| 68 |  | eqid |  |-  ( ( Y ` 1 ) - ( X ` 1 ) ) = ( ( Y ` 1 ) - ( X ` 1 ) ) | 
						
							| 69 |  | eqid |  |-  ( ( Y ` 2 ) - ( X ` 2 ) ) = ( ( Y ` 2 ) - ( X ` 2 ) ) | 
						
							| 70 |  | eqid |  |-  ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) | 
						
							| 71 | 1 2 3 4 68 69 70 | rrx2linest |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } ) | 
						
							| 72 | 67 71 | syl |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( X L Y ) = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } ) | 
						
							| 73 | 8 72 | eqeq12d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( G = ( X L Y ) <-> { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } ) ) | 
						
							| 74 |  | rabbi |  |-  ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) <-> { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } ) | 
						
							| 75 | 7 | fveq1i |  |-  ( Y ` 1 ) = ( { <. 1 , 1 >. , <. 2 , M >. } ` 1 ) | 
						
							| 76 | 9 9 14 | 3pm3.2i |  |-  ( 1 e. _V /\ 1 e. _V /\ 1 =/= 2 ) | 
						
							| 77 |  | fvpr1g |  |-  ( ( 1 e. _V /\ 1 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 1 ) = 1 ) | 
						
							| 78 | 76 77 | mp1i |  |-  ( M e. RR -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 1 ) = 1 ) | 
						
							| 79 | 75 78 | eqtrid |  |-  ( M e. RR -> ( Y ` 1 ) = 1 ) | 
						
							| 80 | 6 | fveq1i |  |-  ( X ` 1 ) = ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) | 
						
							| 81 | 9 12 14 | 3pm3.2i |  |-  ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) | 
						
							| 82 |  | fvpr1g |  |-  ( ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 ) | 
						
							| 83 | 81 82 | mp1i |  |-  ( M e. RR -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 ) | 
						
							| 84 | 80 83 | eqtrid |  |-  ( M e. RR -> ( X ` 1 ) = 0 ) | 
						
							| 85 | 79 84 | oveq12d |  |-  ( M e. RR -> ( ( Y ` 1 ) - ( X ` 1 ) ) = ( 1 - 0 ) ) | 
						
							| 86 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 87 | 85 86 | eqtrdi |  |-  ( M e. RR -> ( ( Y ` 1 ) - ( X ` 1 ) ) = 1 ) | 
						
							| 88 | 87 | oveq1d |  |-  ( M e. RR -> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( 1 x. ( p ` 2 ) ) ) | 
						
							| 89 | 7 | fveq1i |  |-  ( Y ` 2 ) = ( { <. 1 , 1 >. , <. 2 , M >. } ` 2 ) | 
						
							| 90 |  | fvpr2g |  |-  ( ( 2 e. _V /\ M e. RR /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 2 ) = M ) | 
						
							| 91 | 10 14 90 | mp3an13 |  |-  ( M e. RR -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 2 ) = M ) | 
						
							| 92 | 89 91 | eqtrid |  |-  ( M e. RR -> ( Y ` 2 ) = M ) | 
						
							| 93 | 6 | fveq1i |  |-  ( X ` 2 ) = ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) | 
						
							| 94 |  | fvpr2g |  |-  ( ( 2 e. _V /\ M e. RR /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) = M ) | 
						
							| 95 | 10 14 94 | mp3an13 |  |-  ( M e. RR -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) = M ) | 
						
							| 96 | 93 95 | eqtrid |  |-  ( M e. RR -> ( X ` 2 ) = M ) | 
						
							| 97 | 92 96 | oveq12d |  |-  ( M e. RR -> ( ( Y ` 2 ) - ( X ` 2 ) ) = ( M - M ) ) | 
						
							| 98 |  | recn |  |-  ( M e. RR -> M e. CC ) | 
						
							| 99 | 98 | subidd |  |-  ( M e. RR -> ( M - M ) = 0 ) | 
						
							| 100 | 97 99 | eqtrd |  |-  ( M e. RR -> ( ( Y ` 2 ) - ( X ` 2 ) ) = 0 ) | 
						
							| 101 | 100 | oveq1d |  |-  ( M e. RR -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = ( 0 x. ( p ` 1 ) ) ) | 
						
							| 102 | 9 9 15 77 | mp3an12i |  |-  ( M e. RR -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 1 ) = 1 ) | 
						
							| 103 | 75 102 | eqtrid |  |-  ( M e. RR -> ( Y ` 1 ) = 1 ) | 
						
							| 104 | 96 103 | oveq12d |  |-  ( M e. RR -> ( ( X ` 2 ) x. ( Y ` 1 ) ) = ( M x. 1 ) ) | 
						
							| 105 |  | ax-1rid |  |-  ( M e. RR -> ( M x. 1 ) = M ) | 
						
							| 106 | 104 105 | eqtrd |  |-  ( M e. RR -> ( ( X ` 2 ) x. ( Y ` 1 ) ) = M ) | 
						
							| 107 | 9 12 15 82 | mp3an12i |  |-  ( M e. RR -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 ) | 
						
							| 108 | 80 107 | eqtrid |  |-  ( M e. RR -> ( X ` 1 ) = 0 ) | 
						
							| 109 | 108 92 | oveq12d |  |-  ( M e. RR -> ( ( X ` 1 ) x. ( Y ` 2 ) ) = ( 0 x. M ) ) | 
						
							| 110 | 98 | mul02d |  |-  ( M e. RR -> ( 0 x. M ) = 0 ) | 
						
							| 111 | 109 110 | eqtrd |  |-  ( M e. RR -> ( ( X ` 1 ) x. ( Y ` 2 ) ) = 0 ) | 
						
							| 112 | 106 111 | oveq12d |  |-  ( M e. RR -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) = ( M - 0 ) ) | 
						
							| 113 | 98 | subid1d |  |-  ( M e. RR -> ( M - 0 ) = M ) | 
						
							| 114 | 112 113 | eqtrd |  |-  ( M e. RR -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) = M ) | 
						
							| 115 | 101 114 | oveq12d |  |-  ( M e. RR -> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) = ( ( 0 x. ( p ` 1 ) ) + M ) ) | 
						
							| 116 | 88 115 | eqeq12d |  |-  ( M e. RR -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) <-> ( 1 x. ( p ` 2 ) ) = ( ( 0 x. ( p ` 1 ) ) + M ) ) ) | 
						
							| 117 | 116 | adantl |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) <-> ( 1 x. ( p ` 2 ) ) = ( ( 0 x. ( p ` 1 ) ) + M ) ) ) | 
						
							| 118 | 1 3 | rrx2pyel |  |-  ( p e. P -> ( p ` 2 ) e. RR ) | 
						
							| 119 | 118 | recnd |  |-  ( p e. P -> ( p ` 2 ) e. CC ) | 
						
							| 120 | 119 | mullidd |  |-  ( p e. P -> ( 1 x. ( p ` 2 ) ) = ( p ` 2 ) ) | 
						
							| 121 | 1 3 | rrx2pxel |  |-  ( p e. P -> ( p ` 1 ) e. RR ) | 
						
							| 122 | 121 | recnd |  |-  ( p e. P -> ( p ` 1 ) e. CC ) | 
						
							| 123 | 122 | mul02d |  |-  ( p e. P -> ( 0 x. ( p ` 1 ) ) = 0 ) | 
						
							| 124 | 123 | oveq1d |  |-  ( p e. P -> ( ( 0 x. ( p ` 1 ) ) + M ) = ( 0 + M ) ) | 
						
							| 125 | 120 124 | eqeq12d |  |-  ( p e. P -> ( ( 1 x. ( p ` 2 ) ) = ( ( 0 x. ( p ` 1 ) ) + M ) <-> ( p ` 2 ) = ( 0 + M ) ) ) | 
						
							| 126 | 117 125 | sylan9bb |  |-  ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ p e. P ) -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) <-> ( p ` 2 ) = ( 0 + M ) ) ) | 
						
							| 127 | 126 | bibi2d |  |-  ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ p e. P ) -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) <-> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) ) ) | 
						
							| 128 | 127 | ralbidva |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) <-> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) ) ) | 
						
							| 129 | 98 | addlidd |  |-  ( M e. RR -> ( 0 + M ) = M ) | 
						
							| 130 | 129 | adantr |  |-  ( ( M e. RR /\ p e. P ) -> ( 0 + M ) = M ) | 
						
							| 131 | 130 | eqeq2d |  |-  ( ( M e. RR /\ p e. P ) -> ( ( p ` 2 ) = ( 0 + M ) <-> ( p ` 2 ) = M ) ) | 
						
							| 132 | 131 | bibi2d |  |-  ( ( M e. RR /\ p e. P ) -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) <-> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) ) | 
						
							| 133 | 132 | ralbidva |  |-  ( M e. RR -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) <-> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) ) | 
						
							| 134 | 133 | adantl |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) <-> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) ) | 
						
							| 135 | 1 2 3 4 5 6 7 | line2xlem |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) -> ( A = 0 /\ M = ( C / B ) ) ) ) | 
						
							| 136 |  | oveq1 |  |-  ( A = 0 -> ( A x. ( p ` 1 ) ) = ( 0 x. ( p ` 1 ) ) ) | 
						
							| 137 | 136 | adantr |  |-  ( ( A = 0 /\ M = ( C / B ) ) -> ( A x. ( p ` 1 ) ) = ( 0 x. ( p ` 1 ) ) ) | 
						
							| 138 | 137 | ad2antlr |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) = ( 0 x. ( p ` 1 ) ) ) | 
						
							| 139 | 123 | adantl |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( 0 x. ( p ` 1 ) ) = 0 ) | 
						
							| 140 | 138 139 | eqtrd |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) = 0 ) | 
						
							| 141 | 140 | oveq1d |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( 0 + ( B x. ( p ` 2 ) ) ) ) | 
						
							| 142 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 143 | 142 | adantr |  |-  ( ( B e. RR /\ B =/= 0 ) -> B e. CC ) | 
						
							| 144 | 143 | 3ad2ant2 |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B e. CC ) | 
						
							| 145 | 144 | ad3antrrr |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> B e. CC ) | 
						
							| 146 | 119 | adantl |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( p ` 2 ) e. CC ) | 
						
							| 147 | 145 146 | mulcld |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( B x. ( p ` 2 ) ) e. CC ) | 
						
							| 148 | 147 | addlidd |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( 0 + ( B x. ( p ` 2 ) ) ) = ( B x. ( p ` 2 ) ) ) | 
						
							| 149 | 141 148 | eqtrd |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( B x. ( p ` 2 ) ) ) | 
						
							| 150 | 149 | eqeq1d |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( B x. ( p ` 2 ) ) = C ) ) | 
						
							| 151 |  | simp3 |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> C e. RR ) | 
						
							| 152 | 151 | recnd |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> C e. CC ) | 
						
							| 153 | 152 | ad3antrrr |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> C e. CC ) | 
						
							| 154 |  | simpl |  |-  ( ( B e. RR /\ B =/= 0 ) -> B e. RR ) | 
						
							| 155 | 154 | recnd |  |-  ( ( B e. RR /\ B =/= 0 ) -> B e. CC ) | 
						
							| 156 | 155 | 3ad2ant2 |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B e. CC ) | 
						
							| 157 | 156 | ad3antrrr |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> B e. CC ) | 
						
							| 158 |  | simp2r |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B =/= 0 ) | 
						
							| 159 | 158 | ad3antrrr |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> B =/= 0 ) | 
						
							| 160 | 153 157 146 159 | divmuld |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( C / B ) = ( p ` 2 ) <-> ( B x. ( p ` 2 ) ) = C ) ) | 
						
							| 161 |  | simpr |  |-  ( ( A = 0 /\ M = ( C / B ) ) -> M = ( C / B ) ) | 
						
							| 162 | 161 | eqcomd |  |-  ( ( A = 0 /\ M = ( C / B ) ) -> ( C / B ) = M ) | 
						
							| 163 | 162 | ad2antlr |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( C / B ) = M ) | 
						
							| 164 | 163 | eqeq1d |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( C / B ) = ( p ` 2 ) <-> M = ( p ` 2 ) ) ) | 
						
							| 165 | 150 160 164 | 3bitr2d |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> M = ( p ` 2 ) ) ) | 
						
							| 166 |  | eqcom |  |-  ( M = ( p ` 2 ) <-> ( p ` 2 ) = M ) | 
						
							| 167 | 165 166 | bitrdi |  |-  ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) | 
						
							| 168 | 167 | ralrimiva |  |-  ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) -> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) | 
						
							| 169 | 168 | ex |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( ( A = 0 /\ M = ( C / B ) ) -> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) ) | 
						
							| 170 | 135 169 | impbid |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) <-> ( A = 0 /\ M = ( C / B ) ) ) ) | 
						
							| 171 | 128 134 170 | 3bitrd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) <-> ( A = 0 /\ M = ( C / B ) ) ) ) | 
						
							| 172 | 74 171 | bitr3id |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } <-> ( A = 0 /\ M = ( C / B ) ) ) ) | 
						
							| 173 | 73 172 | bitrd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( G = ( X L Y ) <-> ( A = 0 /\ M = ( C / B ) ) ) ) |