Step |
Hyp |
Ref |
Expression |
1 |
|
line2.i |
|- I = { 1 , 2 } |
2 |
|
line2.e |
|- E = ( RR^ ` I ) |
3 |
|
line2.p |
|- P = ( RR ^m I ) |
4 |
|
line2.l |
|- L = ( LineM ` E ) |
5 |
|
line2.g |
|- G = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } |
6 |
|
line2x.x |
|- X = { <. 1 , 0 >. , <. 2 , M >. } |
7 |
|
line2x.y |
|- Y = { <. 1 , 1 >. , <. 2 , M >. } |
8 |
5
|
a1i |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> G = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) |
9 |
|
1ex |
|- 1 e. _V |
10 |
|
2ex |
|- 2 e. _V |
11 |
9 10
|
pm3.2i |
|- ( 1 e. _V /\ 2 e. _V ) |
12 |
|
c0ex |
|- 0 e. _V |
13 |
12
|
jctl |
|- ( M e. RR -> ( 0 e. _V /\ M e. RR ) ) |
14 |
|
1ne2 |
|- 1 =/= 2 |
15 |
14
|
a1i |
|- ( M e. RR -> 1 =/= 2 ) |
16 |
|
fprg |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> { 0 , M } ) |
17 |
|
0red |
|- ( ( 1 e. _V /\ 2 e. _V ) -> 0 e. RR ) |
18 |
|
simpr |
|- ( ( 0 e. _V /\ M e. RR ) -> M e. RR ) |
19 |
17 18
|
anim12i |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) ) -> ( 0 e. RR /\ M e. RR ) ) |
20 |
19
|
3adant3 |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> ( 0 e. RR /\ M e. RR ) ) |
21 |
|
prssi |
|- ( ( 0 e. RR /\ M e. RR ) -> { 0 , M } C_ RR ) |
22 |
20 21
|
syl |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { 0 , M } C_ RR ) |
23 |
16 22
|
fssd |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) |
24 |
11 13 15 23
|
mp3an2i |
|- ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) |
25 |
1
|
feq2i |
|- ( { <. 1 , 0 >. , <. 2 , M >. } : I --> RR <-> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) |
26 |
24 25
|
sylibr |
|- ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } : I --> RR ) |
27 |
|
reex |
|- RR e. _V |
28 |
|
prex |
|- { 1 , 2 } e. _V |
29 |
1 28
|
eqeltri |
|- I e. _V |
30 |
27 29
|
elmap |
|- ( { <. 1 , 0 >. , <. 2 , M >. } e. ( RR ^m I ) <-> { <. 1 , 0 >. , <. 2 , M >. } : I --> RR ) |
31 |
26 30
|
sylibr |
|- ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } e. ( RR ^m I ) ) |
32 |
31 6 3
|
3eltr4g |
|- ( M e. RR -> X e. P ) |
33 |
9
|
jctl |
|- ( M e. RR -> ( 1 e. _V /\ M e. RR ) ) |
34 |
|
fprg |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 1 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 1 >. , <. 2 , M >. } : { 1 , 2 } --> { 1 , M } ) |
35 |
11 33 15 34
|
mp3an2i |
|- ( M e. RR -> { <. 1 , 1 >. , <. 2 , M >. } : { 1 , 2 } --> { 1 , M } ) |
36 |
|
1re |
|- 1 e. RR |
37 |
|
prssi |
|- ( ( 1 e. RR /\ M e. RR ) -> { 1 , M } C_ RR ) |
38 |
36 37
|
mpan |
|- ( M e. RR -> { 1 , M } C_ RR ) |
39 |
35 38
|
fssd |
|- ( M e. RR -> { <. 1 , 1 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) |
40 |
1
|
feq2i |
|- ( { <. 1 , 1 >. , <. 2 , M >. } : I --> RR <-> { <. 1 , 1 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) |
41 |
39 40
|
sylibr |
|- ( M e. RR -> { <. 1 , 1 >. , <. 2 , M >. } : I --> RR ) |
42 |
27 29
|
pm3.2i |
|- ( RR e. _V /\ I e. _V ) |
43 |
|
elmapg |
|- ( ( RR e. _V /\ I e. _V ) -> ( { <. 1 , 1 >. , <. 2 , M >. } e. ( RR ^m I ) <-> { <. 1 , 1 >. , <. 2 , M >. } : I --> RR ) ) |
44 |
42 43
|
mp1i |
|- ( M e. RR -> ( { <. 1 , 1 >. , <. 2 , M >. } e. ( RR ^m I ) <-> { <. 1 , 1 >. , <. 2 , M >. } : I --> RR ) ) |
45 |
41 44
|
mpbird |
|- ( M e. RR -> { <. 1 , 1 >. , <. 2 , M >. } e. ( RR ^m I ) ) |
46 |
45 7 3
|
3eltr4g |
|- ( M e. RR -> Y e. P ) |
47 |
|
opex |
|- <. 1 , 0 >. e. _V |
48 |
|
opex |
|- <. 2 , M >. e. _V |
49 |
47 48
|
pm3.2i |
|- ( <. 1 , 0 >. e. _V /\ <. 2 , M >. e. _V ) |
50 |
|
opex |
|- <. 1 , 1 >. e. _V |
51 |
50 48
|
pm3.2i |
|- ( <. 1 , 1 >. e. _V /\ <. 2 , M >. e. _V ) |
52 |
49 51
|
pm3.2i |
|- ( ( <. 1 , 0 >. e. _V /\ <. 2 , M >. e. _V ) /\ ( <. 1 , 1 >. e. _V /\ <. 2 , M >. e. _V ) ) |
53 |
14
|
orci |
|- ( 1 =/= 2 \/ 0 =/= M ) |
54 |
9 12
|
opthne |
|- ( <. 1 , 0 >. =/= <. 2 , M >. <-> ( 1 =/= 2 \/ 0 =/= M ) ) |
55 |
53 54
|
mpbir |
|- <. 1 , 0 >. =/= <. 2 , M >. |
56 |
55
|
a1i |
|- ( M e. RR -> <. 1 , 0 >. =/= <. 2 , M >. ) |
57 |
|
0ne1 |
|- 0 =/= 1 |
58 |
57
|
olci |
|- ( 1 =/= 1 \/ 0 =/= 1 ) |
59 |
9 12
|
opthne |
|- ( <. 1 , 0 >. =/= <. 1 , 1 >. <-> ( 1 =/= 1 \/ 0 =/= 1 ) ) |
60 |
58 59
|
mpbir |
|- <. 1 , 0 >. =/= <. 1 , 1 >. |
61 |
56 60
|
jctil |
|- ( M e. RR -> ( <. 1 , 0 >. =/= <. 1 , 1 >. /\ <. 1 , 0 >. =/= <. 2 , M >. ) ) |
62 |
61
|
orcd |
|- ( M e. RR -> ( ( <. 1 , 0 >. =/= <. 1 , 1 >. /\ <. 1 , 0 >. =/= <. 2 , M >. ) \/ ( <. 2 , M >. =/= <. 1 , 1 >. /\ <. 2 , M >. =/= <. 2 , M >. ) ) ) |
63 |
|
prneimg |
|- ( ( ( <. 1 , 0 >. e. _V /\ <. 2 , M >. e. _V ) /\ ( <. 1 , 1 >. e. _V /\ <. 2 , M >. e. _V ) ) -> ( ( ( <. 1 , 0 >. =/= <. 1 , 1 >. /\ <. 1 , 0 >. =/= <. 2 , M >. ) \/ ( <. 2 , M >. =/= <. 1 , 1 >. /\ <. 2 , M >. =/= <. 2 , M >. ) ) -> { <. 1 , 0 >. , <. 2 , M >. } =/= { <. 1 , 1 >. , <. 2 , M >. } ) ) |
64 |
52 62 63
|
mpsyl |
|- ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } =/= { <. 1 , 1 >. , <. 2 , M >. } ) |
65 |
64 6 7
|
3netr4g |
|- ( M e. RR -> X =/= Y ) |
66 |
32 46 65
|
3jca |
|- ( M e. RR -> ( X e. P /\ Y e. P /\ X =/= Y ) ) |
67 |
66
|
adantl |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( X e. P /\ Y e. P /\ X =/= Y ) ) |
68 |
|
eqid |
|- ( ( Y ` 1 ) - ( X ` 1 ) ) = ( ( Y ` 1 ) - ( X ` 1 ) ) |
69 |
|
eqid |
|- ( ( Y ` 2 ) - ( X ` 2 ) ) = ( ( Y ` 2 ) - ( X ` 2 ) ) |
70 |
|
eqid |
|- ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) |
71 |
1 2 3 4 68 69 70
|
rrx2linest |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } ) |
72 |
67 71
|
syl |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( X L Y ) = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } ) |
73 |
8 72
|
eqeq12d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( G = ( X L Y ) <-> { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } ) ) |
74 |
|
rabbi |
|- ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) <-> { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } ) |
75 |
7
|
fveq1i |
|- ( Y ` 1 ) = ( { <. 1 , 1 >. , <. 2 , M >. } ` 1 ) |
76 |
9 9 14
|
3pm3.2i |
|- ( 1 e. _V /\ 1 e. _V /\ 1 =/= 2 ) |
77 |
|
fvpr1g |
|- ( ( 1 e. _V /\ 1 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 1 ) = 1 ) |
78 |
76 77
|
mp1i |
|- ( M e. RR -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 1 ) = 1 ) |
79 |
75 78
|
syl5eq |
|- ( M e. RR -> ( Y ` 1 ) = 1 ) |
80 |
6
|
fveq1i |
|- ( X ` 1 ) = ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) |
81 |
9 12 14
|
3pm3.2i |
|- ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) |
82 |
|
fvpr1g |
|- ( ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 ) |
83 |
81 82
|
mp1i |
|- ( M e. RR -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 ) |
84 |
80 83
|
syl5eq |
|- ( M e. RR -> ( X ` 1 ) = 0 ) |
85 |
79 84
|
oveq12d |
|- ( M e. RR -> ( ( Y ` 1 ) - ( X ` 1 ) ) = ( 1 - 0 ) ) |
86 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
87 |
85 86
|
eqtrdi |
|- ( M e. RR -> ( ( Y ` 1 ) - ( X ` 1 ) ) = 1 ) |
88 |
87
|
oveq1d |
|- ( M e. RR -> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( 1 x. ( p ` 2 ) ) ) |
89 |
7
|
fveq1i |
|- ( Y ` 2 ) = ( { <. 1 , 1 >. , <. 2 , M >. } ` 2 ) |
90 |
|
fvpr2g |
|- ( ( 2 e. _V /\ M e. RR /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 2 ) = M ) |
91 |
10 14 90
|
mp3an13 |
|- ( M e. RR -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 2 ) = M ) |
92 |
89 91
|
syl5eq |
|- ( M e. RR -> ( Y ` 2 ) = M ) |
93 |
6
|
fveq1i |
|- ( X ` 2 ) = ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) |
94 |
|
fvpr2g |
|- ( ( 2 e. _V /\ M e. RR /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) = M ) |
95 |
10 14 94
|
mp3an13 |
|- ( M e. RR -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) = M ) |
96 |
93 95
|
syl5eq |
|- ( M e. RR -> ( X ` 2 ) = M ) |
97 |
92 96
|
oveq12d |
|- ( M e. RR -> ( ( Y ` 2 ) - ( X ` 2 ) ) = ( M - M ) ) |
98 |
|
recn |
|- ( M e. RR -> M e. CC ) |
99 |
98
|
subidd |
|- ( M e. RR -> ( M - M ) = 0 ) |
100 |
97 99
|
eqtrd |
|- ( M e. RR -> ( ( Y ` 2 ) - ( X ` 2 ) ) = 0 ) |
101 |
100
|
oveq1d |
|- ( M e. RR -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = ( 0 x. ( p ` 1 ) ) ) |
102 |
9 9 15 77
|
mp3an12i |
|- ( M e. RR -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 1 ) = 1 ) |
103 |
75 102
|
syl5eq |
|- ( M e. RR -> ( Y ` 1 ) = 1 ) |
104 |
96 103
|
oveq12d |
|- ( M e. RR -> ( ( X ` 2 ) x. ( Y ` 1 ) ) = ( M x. 1 ) ) |
105 |
|
ax-1rid |
|- ( M e. RR -> ( M x. 1 ) = M ) |
106 |
104 105
|
eqtrd |
|- ( M e. RR -> ( ( X ` 2 ) x. ( Y ` 1 ) ) = M ) |
107 |
9 12 15 82
|
mp3an12i |
|- ( M e. RR -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 ) |
108 |
80 107
|
syl5eq |
|- ( M e. RR -> ( X ` 1 ) = 0 ) |
109 |
108 92
|
oveq12d |
|- ( M e. RR -> ( ( X ` 1 ) x. ( Y ` 2 ) ) = ( 0 x. M ) ) |
110 |
98
|
mul02d |
|- ( M e. RR -> ( 0 x. M ) = 0 ) |
111 |
109 110
|
eqtrd |
|- ( M e. RR -> ( ( X ` 1 ) x. ( Y ` 2 ) ) = 0 ) |
112 |
106 111
|
oveq12d |
|- ( M e. RR -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) = ( M - 0 ) ) |
113 |
98
|
subid1d |
|- ( M e. RR -> ( M - 0 ) = M ) |
114 |
112 113
|
eqtrd |
|- ( M e. RR -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) = M ) |
115 |
101 114
|
oveq12d |
|- ( M e. RR -> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) = ( ( 0 x. ( p ` 1 ) ) + M ) ) |
116 |
88 115
|
eqeq12d |
|- ( M e. RR -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) <-> ( 1 x. ( p ` 2 ) ) = ( ( 0 x. ( p ` 1 ) ) + M ) ) ) |
117 |
116
|
adantl |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) <-> ( 1 x. ( p ` 2 ) ) = ( ( 0 x. ( p ` 1 ) ) + M ) ) ) |
118 |
1 3
|
rrx2pyel |
|- ( p e. P -> ( p ` 2 ) e. RR ) |
119 |
118
|
recnd |
|- ( p e. P -> ( p ` 2 ) e. CC ) |
120 |
119
|
mulid2d |
|- ( p e. P -> ( 1 x. ( p ` 2 ) ) = ( p ` 2 ) ) |
121 |
1 3
|
rrx2pxel |
|- ( p e. P -> ( p ` 1 ) e. RR ) |
122 |
121
|
recnd |
|- ( p e. P -> ( p ` 1 ) e. CC ) |
123 |
122
|
mul02d |
|- ( p e. P -> ( 0 x. ( p ` 1 ) ) = 0 ) |
124 |
123
|
oveq1d |
|- ( p e. P -> ( ( 0 x. ( p ` 1 ) ) + M ) = ( 0 + M ) ) |
125 |
120 124
|
eqeq12d |
|- ( p e. P -> ( ( 1 x. ( p ` 2 ) ) = ( ( 0 x. ( p ` 1 ) ) + M ) <-> ( p ` 2 ) = ( 0 + M ) ) ) |
126 |
117 125
|
sylan9bb |
|- ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ p e. P ) -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) <-> ( p ` 2 ) = ( 0 + M ) ) ) |
127 |
126
|
bibi2d |
|- ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ p e. P ) -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) <-> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) ) ) |
128 |
127
|
ralbidva |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) <-> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) ) ) |
129 |
98
|
addid2d |
|- ( M e. RR -> ( 0 + M ) = M ) |
130 |
129
|
adantr |
|- ( ( M e. RR /\ p e. P ) -> ( 0 + M ) = M ) |
131 |
130
|
eqeq2d |
|- ( ( M e. RR /\ p e. P ) -> ( ( p ` 2 ) = ( 0 + M ) <-> ( p ` 2 ) = M ) ) |
132 |
131
|
bibi2d |
|- ( ( M e. RR /\ p e. P ) -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) <-> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) ) |
133 |
132
|
ralbidva |
|- ( M e. RR -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) <-> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) ) |
134 |
133
|
adantl |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) <-> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) ) |
135 |
1 2 3 4 5 6 7
|
line2xlem |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) -> ( A = 0 /\ M = ( C / B ) ) ) ) |
136 |
|
oveq1 |
|- ( A = 0 -> ( A x. ( p ` 1 ) ) = ( 0 x. ( p ` 1 ) ) ) |
137 |
136
|
adantr |
|- ( ( A = 0 /\ M = ( C / B ) ) -> ( A x. ( p ` 1 ) ) = ( 0 x. ( p ` 1 ) ) ) |
138 |
137
|
ad2antlr |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) = ( 0 x. ( p ` 1 ) ) ) |
139 |
123
|
adantl |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( 0 x. ( p ` 1 ) ) = 0 ) |
140 |
138 139
|
eqtrd |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) = 0 ) |
141 |
140
|
oveq1d |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( 0 + ( B x. ( p ` 2 ) ) ) ) |
142 |
|
recn |
|- ( B e. RR -> B e. CC ) |
143 |
142
|
adantr |
|- ( ( B e. RR /\ B =/= 0 ) -> B e. CC ) |
144 |
143
|
3ad2ant2 |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B e. CC ) |
145 |
144
|
ad3antrrr |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> B e. CC ) |
146 |
119
|
adantl |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( p ` 2 ) e. CC ) |
147 |
145 146
|
mulcld |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( B x. ( p ` 2 ) ) e. CC ) |
148 |
147
|
addid2d |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( 0 + ( B x. ( p ` 2 ) ) ) = ( B x. ( p ` 2 ) ) ) |
149 |
141 148
|
eqtrd |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( B x. ( p ` 2 ) ) ) |
150 |
149
|
eqeq1d |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( B x. ( p ` 2 ) ) = C ) ) |
151 |
|
simp3 |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> C e. RR ) |
152 |
151
|
recnd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> C e. CC ) |
153 |
152
|
ad3antrrr |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> C e. CC ) |
154 |
|
simpl |
|- ( ( B e. RR /\ B =/= 0 ) -> B e. RR ) |
155 |
154
|
recnd |
|- ( ( B e. RR /\ B =/= 0 ) -> B e. CC ) |
156 |
155
|
3ad2ant2 |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B e. CC ) |
157 |
156
|
ad3antrrr |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> B e. CC ) |
158 |
|
simp2r |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B =/= 0 ) |
159 |
158
|
ad3antrrr |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> B =/= 0 ) |
160 |
153 157 146 159
|
divmuld |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( C / B ) = ( p ` 2 ) <-> ( B x. ( p ` 2 ) ) = C ) ) |
161 |
|
simpr |
|- ( ( A = 0 /\ M = ( C / B ) ) -> M = ( C / B ) ) |
162 |
161
|
eqcomd |
|- ( ( A = 0 /\ M = ( C / B ) ) -> ( C / B ) = M ) |
163 |
162
|
ad2antlr |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( C / B ) = M ) |
164 |
163
|
eqeq1d |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( C / B ) = ( p ` 2 ) <-> M = ( p ` 2 ) ) ) |
165 |
150 160 164
|
3bitr2d |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> M = ( p ` 2 ) ) ) |
166 |
|
eqcom |
|- ( M = ( p ` 2 ) <-> ( p ` 2 ) = M ) |
167 |
165 166
|
bitrdi |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) |
168 |
167
|
ralrimiva |
|- ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) -> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) |
169 |
168
|
ex |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( ( A = 0 /\ M = ( C / B ) ) -> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) ) |
170 |
135 169
|
impbid |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) <-> ( A = 0 /\ M = ( C / B ) ) ) ) |
171 |
128 134 170
|
3bitrd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) <-> ( A = 0 /\ M = ( C / B ) ) ) ) |
172 |
74 171
|
bitr3id |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } <-> ( A = 0 /\ M = ( C / B ) ) ) ) |
173 |
73 172
|
bitrd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( G = ( X L Y ) <-> ( A = 0 /\ M = ( C / B ) ) ) ) |