Metamath Proof Explorer


Theorem madebdaylemlrcut

Description: Lemma for madebday . If the inductive hypothesis of madebday is satisfied up to the birthday of X , then the conclusion of lrcut holds. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Assertion madebdaylemlrcut ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 ssltleft ( 𝑋 No → ( L ‘ 𝑋 ) <<s { 𝑋 } )
2 1 adantl ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → ( L ‘ 𝑋 ) <<s { 𝑋 } )
3 ssltright ( 𝑋 No → { 𝑋 } <<s ( R ‘ 𝑋 ) )
4 3 adantl ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → { 𝑋 } <<s ( R ‘ 𝑋 ) )
5 fveq2 ( 𝑋 = 𝑤 → ( bday 𝑋 ) = ( bday 𝑤 ) )
6 eqimss ( ( bday 𝑋 ) = ( bday 𝑤 ) → ( bday 𝑋 ) ⊆ ( bday 𝑤 ) )
7 5 6 syl ( 𝑋 = 𝑤 → ( bday 𝑋 ) ⊆ ( bday 𝑤 ) )
8 7 a1i ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) ) ) → ( 𝑋 = 𝑤 → ( bday 𝑋 ) ⊆ ( bday 𝑤 ) ) )
9 ssltsep ( ( L ‘ 𝑋 ) <<s { 𝑤 } → ∀ 𝑥 ∈ ( L ‘ 𝑋 ) ∀ 𝑦 ∈ { 𝑤 } 𝑥 <s 𝑦 )
10 vex 𝑤 ∈ V
11 breq2 ( 𝑦 = 𝑤 → ( 𝑥 <s 𝑦𝑥 <s 𝑤 ) )
12 10 11 ralsn ( ∀ 𝑦 ∈ { 𝑤 } 𝑥 <s 𝑦𝑥 <s 𝑤 )
13 12 ralbii ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) ∀ 𝑦 ∈ { 𝑤 } 𝑥 <s 𝑦 ↔ ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 )
14 9 13 sylib ( ( L ‘ 𝑋 ) <<s { 𝑤 } → ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 )
15 ssltsep ( { 𝑤 } <<s ( R ‘ 𝑋 ) → ∀ 𝑦 ∈ { 𝑤 } ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑦 <s 𝑥 )
16 breq1 ( 𝑦 = 𝑤 → ( 𝑦 <s 𝑥𝑤 <s 𝑥 ) )
17 16 ralbidv ( 𝑦 = 𝑤 → ( ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑦 <s 𝑥 ↔ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) )
18 10 17 ralsn ( ∀ 𝑦 ∈ { 𝑤 } ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑦 <s 𝑥 ↔ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 )
19 15 18 sylib ( { 𝑤 } <<s ( R ‘ 𝑋 ) → ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 )
20 14 19 anim12i ( ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) )
21 leftval ( 𝑋 No → ( L ‘ 𝑋 ) = { 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑧 <s 𝑋 } )
22 21 raleqdv ( 𝑋 No → ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ↔ ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑧 <s 𝑋 } 𝑥 <s 𝑤 ) )
23 rightval ( 𝑋 No → ( R ‘ 𝑋 ) = { 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑋 <s 𝑧 } )
24 23 raleqdv ( 𝑋 No → ( ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ↔ ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑋 <s 𝑧 } 𝑤 <s 𝑥 ) )
25 22 24 anbi12d ( 𝑋 No → ( ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) ↔ ( ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑧 <s 𝑋 } 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑋 <s 𝑧 } 𝑤 <s 𝑥 ) ) )
26 breq1 ( 𝑧 = 𝑥 → ( 𝑧 <s 𝑋𝑥 <s 𝑋 ) )
27 26 ralrab ( ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑧 <s 𝑋 } 𝑥 <s 𝑤 ↔ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) )
28 breq2 ( 𝑧 = 𝑥 → ( 𝑋 <s 𝑧𝑋 <s 𝑥 ) )
29 28 ralrab ( ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑋 <s 𝑧 } 𝑤 <s 𝑥 ↔ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) )
30 27 29 anbi12i ( ( ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑧 <s 𝑋 } 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑋 <s 𝑧 } 𝑤 <s 𝑥 ) ↔ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) )
31 25 30 bitrdi ( 𝑋 No → ( ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) ↔ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) )
32 31 ad2antlr ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ 𝑤 No ) → ( ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) ↔ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) )
33 simplrl ( ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋𝑤 ) → 𝑤 No )
34 sltirr ( 𝑤 No → ¬ 𝑤 <s 𝑤 )
35 33 34 syl ( ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋𝑤 ) → ¬ 𝑤 <s 𝑤 )
36 bdayelon ( bday 𝑋 ) ∈ On
37 bdayelon ( bday 𝑤 ) ∈ On
38 ontri1 ( ( ( bday 𝑋 ) ∈ On ∧ ( bday 𝑤 ) ∈ On ) → ( ( bday 𝑋 ) ⊆ ( bday 𝑤 ) ↔ ¬ ( bday 𝑤 ) ∈ ( bday 𝑋 ) ) )
39 36 37 38 mp2an ( ( bday 𝑋 ) ⊆ ( bday 𝑤 ) ↔ ¬ ( bday 𝑤 ) ∈ ( bday 𝑋 ) )
40 39 con2bii ( ( bday 𝑤 ) ∈ ( bday 𝑋 ) ↔ ¬ ( bday 𝑋 ) ⊆ ( bday 𝑤 ) )
41 simplll ( ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋𝑤 ) → ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) )
42 madebdaylemold ( ( ( bday 𝑋 ) ∈ On ∧ ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑤 No ) → ( ( bday 𝑤 ) ∈ ( bday 𝑋 ) → 𝑤 ∈ ( O ‘ ( bday 𝑋 ) ) ) )
43 36 41 33 42 mp3an2i ( ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋𝑤 ) → ( ( bday 𝑤 ) ∈ ( bday 𝑋 ) → 𝑤 ∈ ( O ‘ ( bday 𝑋 ) ) ) )
44 slttrine ( ( 𝑋 No 𝑤 No ) → ( 𝑋𝑤 ↔ ( 𝑋 <s 𝑤𝑤 <s 𝑋 ) ) )
45 44 ad2ant2lr ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) → ( 𝑋𝑤 ↔ ( 𝑋 <s 𝑤𝑤 <s 𝑋 ) ) )
46 simprrr ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) → ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) )
47 breq2 ( 𝑥 = 𝑤 → ( 𝑋 <s 𝑥𝑋 <s 𝑤 ) )
48 breq2 ( 𝑥 = 𝑤 → ( 𝑤 <s 𝑥𝑤 <s 𝑤 ) )
49 47 48 imbi12d ( 𝑥 = 𝑤 → ( ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ↔ ( 𝑋 <s 𝑤𝑤 <s 𝑤 ) ) )
50 49 rspccv ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) → ( 𝑤 ∈ ( O ‘ ( bday 𝑋 ) ) → ( 𝑋 <s 𝑤𝑤 <s 𝑤 ) ) )
51 46 50 syl ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) → ( 𝑤 ∈ ( O ‘ ( bday 𝑋 ) ) → ( 𝑋 <s 𝑤𝑤 <s 𝑤 ) ) )
52 51 com23 ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) → ( 𝑋 <s 𝑤 → ( 𝑤 ∈ ( O ‘ ( bday 𝑋 ) ) → 𝑤 <s 𝑤 ) ) )
53 simprrl ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) → ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) )
54 breq1 ( 𝑥 = 𝑤 → ( 𝑥 <s 𝑋𝑤 <s 𝑋 ) )
55 breq1 ( 𝑥 = 𝑤 → ( 𝑥 <s 𝑤𝑤 <s 𝑤 ) )
56 54 55 imbi12d ( 𝑥 = 𝑤 → ( ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ↔ ( 𝑤 <s 𝑋𝑤 <s 𝑤 ) ) )
57 56 rspccv ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) → ( 𝑤 ∈ ( O ‘ ( bday 𝑋 ) ) → ( 𝑤 <s 𝑋𝑤 <s 𝑤 ) ) )
58 53 57 syl ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) → ( 𝑤 ∈ ( O ‘ ( bday 𝑋 ) ) → ( 𝑤 <s 𝑋𝑤 <s 𝑤 ) ) )
59 58 com23 ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) → ( 𝑤 <s 𝑋 → ( 𝑤 ∈ ( O ‘ ( bday 𝑋 ) ) → 𝑤 <s 𝑤 ) ) )
60 52 59 jaod ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) → ( ( 𝑋 <s 𝑤𝑤 <s 𝑋 ) → ( 𝑤 ∈ ( O ‘ ( bday 𝑋 ) ) → 𝑤 <s 𝑤 ) ) )
61 45 60 sylbid ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) → ( 𝑋𝑤 → ( 𝑤 ∈ ( O ‘ ( bday 𝑋 ) ) → 𝑤 <s 𝑤 ) ) )
62 61 imp ( ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋𝑤 ) → ( 𝑤 ∈ ( O ‘ ( bday 𝑋 ) ) → 𝑤 <s 𝑤 ) )
63 43 62 syld ( ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋𝑤 ) → ( ( bday 𝑤 ) ∈ ( bday 𝑋 ) → 𝑤 <s 𝑤 ) )
64 40 63 syl5bir ( ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋𝑤 ) → ( ¬ ( bday 𝑋 ) ⊆ ( bday 𝑤 ) → 𝑤 <s 𝑤 ) )
65 35 64 mt3d ( ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋𝑤 ) → ( bday 𝑋 ) ⊆ ( bday 𝑤 ) )
66 65 ex ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) ) ) → ( 𝑋𝑤 → ( bday 𝑋 ) ⊆ ( bday 𝑤 ) ) )
67 66 expr ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ 𝑤 No ) → ( ( ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑥 <s 𝑋𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ( 𝑋 <s 𝑥𝑤 <s 𝑥 ) ) → ( 𝑋𝑤 → ( bday 𝑋 ) ⊆ ( bday 𝑤 ) ) ) )
68 32 67 sylbid ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ 𝑤 No ) → ( ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) → ( 𝑋𝑤 → ( bday 𝑋 ) ⊆ ( bday 𝑤 ) ) ) )
69 68 impr ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) ) ) → ( 𝑋𝑤 → ( bday 𝑋 ) ⊆ ( bday 𝑤 ) ) )
70 20 69 sylanr2 ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) ) ) → ( 𝑋𝑤 → ( bday 𝑋 ) ⊆ ( bday 𝑤 ) ) )
71 8 70 pm2.61dne ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ ( 𝑤 No ∧ ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) ) ) → ( bday 𝑋 ) ⊆ ( bday 𝑤 ) )
72 71 expr ( ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) ∧ 𝑤 No ) → ( ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) → ( bday 𝑋 ) ⊆ ( bday 𝑤 ) ) )
73 72 ralrimiva ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → ∀ 𝑤 No ( ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) → ( bday 𝑋 ) ⊆ ( bday 𝑤 ) ) )
74 bdayfn bday Fn No
75 ssrab2 { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ⊆ No
76 fnssintima ( ( bday Fn No ∧ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ⊆ No ) → ( ( bday 𝑋 ) ⊆ ( bday “ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ↔ ∀ 𝑤 ∈ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ( bday 𝑋 ) ⊆ ( bday 𝑤 ) ) )
77 74 75 76 mp2an ( ( bday 𝑋 ) ⊆ ( bday “ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ↔ ∀ 𝑤 ∈ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ( bday 𝑋 ) ⊆ ( bday 𝑤 ) )
78 sneq ( 𝑧 = 𝑤 → { 𝑧 } = { 𝑤 } )
79 78 breq2d ( 𝑧 = 𝑤 → ( ( L ‘ 𝑋 ) <<s { 𝑧 } ↔ ( L ‘ 𝑋 ) <<s { 𝑤 } ) )
80 78 breq1d ( 𝑧 = 𝑤 → ( { 𝑧 } <<s ( R ‘ 𝑋 ) ↔ { 𝑤 } <<s ( R ‘ 𝑋 ) ) )
81 79 80 anbi12d ( 𝑧 = 𝑤 → ( ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) ↔ ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) ) )
82 81 ralrab ( ∀ 𝑤 ∈ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ( bday 𝑋 ) ⊆ ( bday 𝑤 ) ↔ ∀ 𝑤 No ( ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) → ( bday 𝑋 ) ⊆ ( bday 𝑤 ) ) )
83 77 82 bitri ( ( bday 𝑋 ) ⊆ ( bday “ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ↔ ∀ 𝑤 No ( ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) → ( bday 𝑋 ) ⊆ ( bday 𝑤 ) ) )
84 73 83 sylibr ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → ( bday 𝑋 ) ⊆ ( bday “ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) )
85 sneq ( 𝑧 = 𝑋 → { 𝑧 } = { 𝑋 } )
86 85 breq2d ( 𝑧 = 𝑋 → ( ( L ‘ 𝑋 ) <<s { 𝑧 } ↔ ( L ‘ 𝑋 ) <<s { 𝑋 } ) )
87 85 breq1d ( 𝑧 = 𝑋 → ( { 𝑧 } <<s ( R ‘ 𝑋 ) ↔ { 𝑋 } <<s ( R ‘ 𝑋 ) ) )
88 86 87 anbi12d ( 𝑧 = 𝑋 → ( ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) ↔ ( ( L ‘ 𝑋 ) <<s { 𝑋 } ∧ { 𝑋 } <<s ( R ‘ 𝑋 ) ) ) )
89 simpr ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → 𝑋 No )
90 2 4 jca ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → ( ( L ‘ 𝑋 ) <<s { 𝑋 } ∧ { 𝑋 } <<s ( R ‘ 𝑋 ) ) )
91 88 89 90 elrabd ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → 𝑋 ∈ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } )
92 fnfvima ( ( bday Fn No ∧ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ⊆ No 𝑋 ∈ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) → ( bday 𝑋 ) ∈ ( bday “ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) )
93 74 75 91 92 mp3an12i ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → ( bday 𝑋 ) ∈ ( bday “ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) )
94 intss1 ( ( bday 𝑋 ) ∈ ( bday “ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) → ( bday “ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ⊆ ( bday 𝑋 ) )
95 93 94 syl ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → ( bday “ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ⊆ ( bday 𝑋 ) )
96 84 95 eqssd ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → ( bday 𝑋 ) = ( bday “ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) )
97 lltropt ( 𝑋 No → ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) )
98 eqscut ( ( ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) ∧ 𝑋 No ) → ( ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 ↔ ( ( L ‘ 𝑋 ) <<s { 𝑋 } ∧ { 𝑋 } <<s ( R ‘ 𝑋 ) ∧ ( bday 𝑋 ) = ( bday “ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ) ) )
99 97 98 mpancom ( 𝑋 No → ( ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 ↔ ( ( L ‘ 𝑋 ) <<s { 𝑋 } ∧ { 𝑋 } <<s ( R ‘ 𝑋 ) ∧ ( bday 𝑋 ) = ( bday “ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ) ) )
100 99 adantl ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → ( ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 ↔ ( ( L ‘ 𝑋 ) <<s { 𝑋 } ∧ { 𝑋 } <<s ( R ‘ 𝑋 ) ∧ ( bday 𝑋 ) = ( bday “ { 𝑧 No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ) ) )
101 2 4 96 100 mpbir3and ( ( ∀ 𝑏 ∈ ( bday 𝑋 ) ∀ 𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 )