Step |
Hyp |
Ref |
Expression |
1 |
|
ssltleft |
⊢ ( 𝑋 ∈ No → ( L ‘ 𝑋 ) <<s { 𝑋 } ) |
2 |
1
|
adantl |
⊢ ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) → ( L ‘ 𝑋 ) <<s { 𝑋 } ) |
3 |
|
ssltright |
⊢ ( 𝑋 ∈ No → { 𝑋 } <<s ( R ‘ 𝑋 ) ) |
4 |
3
|
adantl |
⊢ ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) → { 𝑋 } <<s ( R ‘ 𝑋 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑋 = 𝑤 → ( bday ‘ 𝑋 ) = ( bday ‘ 𝑤 ) ) |
6 |
|
eqimss |
⊢ ( ( bday ‘ 𝑋 ) = ( bday ‘ 𝑤 ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑋 = 𝑤 → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) |
8 |
7
|
a1i |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) ) ) → ( 𝑋 = 𝑤 → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) ) |
9 |
|
ssltsep |
⊢ ( ( L ‘ 𝑋 ) <<s { 𝑤 } → ∀ 𝑥 ∈ ( L ‘ 𝑋 ) ∀ 𝑦 ∈ { 𝑤 } 𝑥 <s 𝑦 ) |
10 |
|
vex |
⊢ 𝑤 ∈ V |
11 |
|
breq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑥 <s 𝑦 ↔ 𝑥 <s 𝑤 ) ) |
12 |
10 11
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { 𝑤 } 𝑥 <s 𝑦 ↔ 𝑥 <s 𝑤 ) |
13 |
12
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) ∀ 𝑦 ∈ { 𝑤 } 𝑥 <s 𝑦 ↔ ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ) |
14 |
9 13
|
sylib |
⊢ ( ( L ‘ 𝑋 ) <<s { 𝑤 } → ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ) |
15 |
|
ssltsep |
⊢ ( { 𝑤 } <<s ( R ‘ 𝑋 ) → ∀ 𝑦 ∈ { 𝑤 } ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑦 <s 𝑥 ) |
16 |
|
breq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 <s 𝑥 ↔ 𝑤 <s 𝑥 ) ) |
17 |
16
|
ralbidv |
⊢ ( 𝑦 = 𝑤 → ( ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑦 <s 𝑥 ↔ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) ) |
18 |
10 17
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { 𝑤 } ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑦 <s 𝑥 ↔ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) |
19 |
15 18
|
sylib |
⊢ ( { 𝑤 } <<s ( R ‘ 𝑋 ) → ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) |
20 |
14 19
|
anim12i |
⊢ ( ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) ) |
21 |
|
leftval |
⊢ ( L ‘ 𝑋 ) = { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑧 <s 𝑋 } |
22 |
21
|
a1i |
⊢ ( 𝑋 ∈ No → ( L ‘ 𝑋 ) = { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑧 <s 𝑋 } ) |
23 |
22
|
raleqdv |
⊢ ( 𝑋 ∈ No → ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ↔ ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑧 <s 𝑋 } 𝑥 <s 𝑤 ) ) |
24 |
|
rightval |
⊢ ( R ‘ 𝑋 ) = { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } |
25 |
24
|
a1i |
⊢ ( 𝑋 ∈ No → ( R ‘ 𝑋 ) = { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } ) |
26 |
25
|
raleqdv |
⊢ ( 𝑋 ∈ No → ( ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ↔ ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } 𝑤 <s 𝑥 ) ) |
27 |
23 26
|
anbi12d |
⊢ ( 𝑋 ∈ No → ( ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) ↔ ( ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑧 <s 𝑋 } 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } 𝑤 <s 𝑥 ) ) ) |
28 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 <s 𝑋 ↔ 𝑥 <s 𝑋 ) ) |
29 |
28
|
ralrab |
⊢ ( ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑧 <s 𝑋 } 𝑥 <s 𝑤 ↔ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ) |
30 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑋 <s 𝑧 ↔ 𝑋 <s 𝑥 ) ) |
31 |
30
|
ralrab |
⊢ ( ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } 𝑤 <s 𝑥 ↔ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) |
32 |
29 31
|
anbi12i |
⊢ ( ( ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑧 <s 𝑋 } 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } 𝑤 <s 𝑥 ) ↔ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) |
33 |
27 32
|
bitrdi |
⊢ ( 𝑋 ∈ No → ( ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) ↔ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) |
34 |
33
|
ad2antlr |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ 𝑤 ∈ No ) → ( ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) ↔ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) |
35 |
|
simplrl |
⊢ ( ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋 ≠ 𝑤 ) → 𝑤 ∈ No ) |
36 |
|
sltirr |
⊢ ( 𝑤 ∈ No → ¬ 𝑤 <s 𝑤 ) |
37 |
35 36
|
syl |
⊢ ( ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋 ≠ 𝑤 ) → ¬ 𝑤 <s 𝑤 ) |
38 |
|
bdayelon |
⊢ ( bday ‘ 𝑋 ) ∈ On |
39 |
|
bdayelon |
⊢ ( bday ‘ 𝑤 ) ∈ On |
40 |
|
ontri1 |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑤 ) ∈ On ) → ( ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ↔ ¬ ( bday ‘ 𝑤 ) ∈ ( bday ‘ 𝑋 ) ) ) |
41 |
38 39 40
|
mp2an |
⊢ ( ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ↔ ¬ ( bday ‘ 𝑤 ) ∈ ( bday ‘ 𝑋 ) ) |
42 |
41
|
con2bii |
⊢ ( ( bday ‘ 𝑤 ) ∈ ( bday ‘ 𝑋 ) ↔ ¬ ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) |
43 |
|
simplll |
⊢ ( ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋 ≠ 𝑤 ) → ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ) |
44 |
|
madebdaylemold |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑤 ∈ No ) → ( ( bday ‘ 𝑤 ) ∈ ( bday ‘ 𝑋 ) → 𝑤 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ) ) |
45 |
38 43 35 44
|
mp3an2i |
⊢ ( ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋 ≠ 𝑤 ) → ( ( bday ‘ 𝑤 ) ∈ ( bday ‘ 𝑋 ) → 𝑤 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ) ) |
46 |
|
slttrine |
⊢ ( ( 𝑋 ∈ No ∧ 𝑤 ∈ No ) → ( 𝑋 ≠ 𝑤 ↔ ( 𝑋 <s 𝑤 ∨ 𝑤 <s 𝑋 ) ) ) |
47 |
46
|
ad2ant2lr |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) → ( 𝑋 ≠ 𝑤 ↔ ( 𝑋 <s 𝑤 ∨ 𝑤 <s 𝑋 ) ) ) |
48 |
|
simprrr |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) → ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) |
49 |
|
breq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑋 <s 𝑥 ↔ 𝑋 <s 𝑤 ) ) |
50 |
|
breq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑤 <s 𝑥 ↔ 𝑤 <s 𝑤 ) ) |
51 |
49 50
|
imbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ↔ ( 𝑋 <s 𝑤 → 𝑤 <s 𝑤 ) ) ) |
52 |
51
|
rspccv |
⊢ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) → ( 𝑤 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) → ( 𝑋 <s 𝑤 → 𝑤 <s 𝑤 ) ) ) |
53 |
48 52
|
syl |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) → ( 𝑤 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) → ( 𝑋 <s 𝑤 → 𝑤 <s 𝑤 ) ) ) |
54 |
53
|
com23 |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) → ( 𝑋 <s 𝑤 → ( 𝑤 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) → 𝑤 <s 𝑤 ) ) ) |
55 |
|
simprrl |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) → ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ) |
56 |
|
breq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 <s 𝑋 ↔ 𝑤 <s 𝑋 ) ) |
57 |
|
breq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 <s 𝑤 ↔ 𝑤 <s 𝑤 ) ) |
58 |
56 57
|
imbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ↔ ( 𝑤 <s 𝑋 → 𝑤 <s 𝑤 ) ) ) |
59 |
58
|
rspccv |
⊢ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) → ( 𝑤 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) → ( 𝑤 <s 𝑋 → 𝑤 <s 𝑤 ) ) ) |
60 |
55 59
|
syl |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) → ( 𝑤 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) → ( 𝑤 <s 𝑋 → 𝑤 <s 𝑤 ) ) ) |
61 |
60
|
com23 |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) → ( 𝑤 <s 𝑋 → ( 𝑤 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) → 𝑤 <s 𝑤 ) ) ) |
62 |
54 61
|
jaod |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) → ( ( 𝑋 <s 𝑤 ∨ 𝑤 <s 𝑋 ) → ( 𝑤 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) → 𝑤 <s 𝑤 ) ) ) |
63 |
47 62
|
sylbid |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) → ( 𝑋 ≠ 𝑤 → ( 𝑤 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) → 𝑤 <s 𝑤 ) ) ) |
64 |
63
|
imp |
⊢ ( ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋 ≠ 𝑤 ) → ( 𝑤 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) → 𝑤 <s 𝑤 ) ) |
65 |
45 64
|
syld |
⊢ ( ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋 ≠ 𝑤 ) → ( ( bday ‘ 𝑤 ) ∈ ( bday ‘ 𝑋 ) → 𝑤 <s 𝑤 ) ) |
66 |
42 65
|
syl5bir |
⊢ ( ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋 ≠ 𝑤 ) → ( ¬ ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) → 𝑤 <s 𝑤 ) ) |
67 |
37 66
|
mt3d |
⊢ ( ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) ∧ 𝑋 ≠ 𝑤 ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) |
68 |
67
|
ex |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) ) ) → ( 𝑋 ≠ 𝑤 → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) ) |
69 |
68
|
expr |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ 𝑤 ∈ No ) → ( ( ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑥 <s 𝑋 → 𝑥 <s 𝑤 ) ∧ ∀ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ( 𝑋 <s 𝑥 → 𝑤 <s 𝑥 ) ) → ( 𝑋 ≠ 𝑤 → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) ) ) |
70 |
34 69
|
sylbid |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ 𝑤 ∈ No ) → ( ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) → ( 𝑋 ≠ 𝑤 → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) ) ) |
71 |
70
|
impr |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) 𝑥 <s 𝑤 ∧ ∀ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑤 <s 𝑥 ) ) ) → ( 𝑋 ≠ 𝑤 → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) ) |
72 |
20 71
|
sylanr2 |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) ) ) → ( 𝑋 ≠ 𝑤 → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) ) |
73 |
8 72
|
pm2.61dne |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ ( 𝑤 ∈ No ∧ ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) ) ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) |
74 |
73
|
expr |
⊢ ( ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) ∧ 𝑤 ∈ No ) → ( ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) ) |
75 |
74
|
ralrimiva |
⊢ ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) → ∀ 𝑤 ∈ No ( ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) ) |
76 |
|
bdayfn |
⊢ bday Fn No |
77 |
|
ssrab2 |
⊢ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ⊆ No |
78 |
|
fnssintima |
⊢ ( ( bday Fn No ∧ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ⊆ No ) → ( ( bday ‘ 𝑋 ) ⊆ ∩ ( bday “ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ↔ ∀ 𝑤 ∈ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) ) |
79 |
76 77 78
|
mp2an |
⊢ ( ( bday ‘ 𝑋 ) ⊆ ∩ ( bday “ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ↔ ∀ 𝑤 ∈ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) |
80 |
|
sneq |
⊢ ( 𝑧 = 𝑤 → { 𝑧 } = { 𝑤 } ) |
81 |
80
|
breq2d |
⊢ ( 𝑧 = 𝑤 → ( ( L ‘ 𝑋 ) <<s { 𝑧 } ↔ ( L ‘ 𝑋 ) <<s { 𝑤 } ) ) |
82 |
80
|
breq1d |
⊢ ( 𝑧 = 𝑤 → ( { 𝑧 } <<s ( R ‘ 𝑋 ) ↔ { 𝑤 } <<s ( R ‘ 𝑋 ) ) ) |
83 |
81 82
|
anbi12d |
⊢ ( 𝑧 = 𝑤 → ( ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) ↔ ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) ) ) |
84 |
83
|
ralrab |
⊢ ( ∀ 𝑤 ∈ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ↔ ∀ 𝑤 ∈ No ( ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) ) |
85 |
79 84
|
bitri |
⊢ ( ( bday ‘ 𝑋 ) ⊆ ∩ ( bday “ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ↔ ∀ 𝑤 ∈ No ( ( ( L ‘ 𝑋 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ( R ‘ 𝑋 ) ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑤 ) ) ) |
86 |
75 85
|
sylibr |
⊢ ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) → ( bday ‘ 𝑋 ) ⊆ ∩ ( bday “ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ) |
87 |
|
sneq |
⊢ ( 𝑧 = 𝑋 → { 𝑧 } = { 𝑋 } ) |
88 |
87
|
breq2d |
⊢ ( 𝑧 = 𝑋 → ( ( L ‘ 𝑋 ) <<s { 𝑧 } ↔ ( L ‘ 𝑋 ) <<s { 𝑋 } ) ) |
89 |
87
|
breq1d |
⊢ ( 𝑧 = 𝑋 → ( { 𝑧 } <<s ( R ‘ 𝑋 ) ↔ { 𝑋 } <<s ( R ‘ 𝑋 ) ) ) |
90 |
88 89
|
anbi12d |
⊢ ( 𝑧 = 𝑋 → ( ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) ↔ ( ( L ‘ 𝑋 ) <<s { 𝑋 } ∧ { 𝑋 } <<s ( R ‘ 𝑋 ) ) ) ) |
91 |
|
simpr |
⊢ ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) → 𝑋 ∈ No ) |
92 |
2 4
|
jca |
⊢ ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) → ( ( L ‘ 𝑋 ) <<s { 𝑋 } ∧ { 𝑋 } <<s ( R ‘ 𝑋 ) ) ) |
93 |
90 91 92
|
elrabd |
⊢ ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) → 𝑋 ∈ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) |
94 |
|
fnfvima |
⊢ ( ( bday Fn No ∧ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ⊆ No ∧ 𝑋 ∈ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) → ( bday ‘ 𝑋 ) ∈ ( bday “ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ) |
95 |
76 77 93 94
|
mp3an12i |
⊢ ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) → ( bday ‘ 𝑋 ) ∈ ( bday “ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ) |
96 |
|
intss1 |
⊢ ( ( bday ‘ 𝑋 ) ∈ ( bday “ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) → ∩ ( bday “ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ⊆ ( bday ‘ 𝑋 ) ) |
97 |
95 96
|
syl |
⊢ ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) → ∩ ( bday “ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ⊆ ( bday ‘ 𝑋 ) ) |
98 |
86 97
|
eqssd |
⊢ ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) → ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ) |
99 |
|
lltropt |
⊢ ( 𝑋 ∈ No → ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) ) |
100 |
|
eqscut |
⊢ ( ( ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) ∧ 𝑋 ∈ No ) → ( ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 ↔ ( ( L ‘ 𝑋 ) <<s { 𝑋 } ∧ { 𝑋 } <<s ( R ‘ 𝑋 ) ∧ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ) ) ) |
101 |
99 100
|
mpancom |
⊢ ( 𝑋 ∈ No → ( ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 ↔ ( ( L ‘ 𝑋 ) <<s { 𝑋 } ∧ { 𝑋 } <<s ( R ‘ 𝑋 ) ∧ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ) ) ) |
102 |
101
|
adantl |
⊢ ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) → ( ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 ↔ ( ( L ‘ 𝑋 ) <<s { 𝑋 } ∧ { 𝑋 } <<s ( R ‘ 𝑋 ) ∧ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑧 ∈ No ∣ ( ( L ‘ 𝑋 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( R ‘ 𝑋 ) ) } ) ) ) ) |
103 |
2 4 98 102
|
mpbir3and |
⊢ ( ( ∀ 𝑏 ∈ ( bday ‘ 𝑋 ) ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) → ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 ) |