| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat2pmatbas.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 2 |
|
mat2pmatbas.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 3 |
|
mat2pmatbas.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 4 |
|
mat2pmatbas.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 5 |
|
mat2pmatbas.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 6 |
|
mat2pmatbas0.h |
⊢ 𝐻 = ( Base ‘ 𝐶 ) |
| 7 |
|
eqid |
⊢ ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) |
| 8 |
2 7
|
matmulr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 9 |
8
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( .r ‘ 𝐴 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ) |
| 10 |
9
|
oveqdr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑦 ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 12 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 13 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 14 |
13
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
| 15 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑁 ∈ Fin ) |
| 16 |
3
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 17 |
16
|
biimpi |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 19 |
18
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 20 |
2 11
|
matbas2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 22 |
19 21
|
eleqtrrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 23 |
3
|
eleq2i |
⊢ ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
| 24 |
23
|
biimpi |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
| 25 |
24
|
ad2antll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
| 26 |
20
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ↔ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ↔ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) |
| 28 |
25 27
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 29 |
7 11 12 14 15 15 15 22 28
|
mamuval |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑦 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑗 ) ) ) ) ) ) |
| 30 |
10 29
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑗 ) ) ) ) ) ) |
| 31 |
30
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑗 ) ) ) ) ) ) |
| 32 |
|
oveq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 𝑥 𝑚 ) = ( 𝑘 𝑥 𝑚 ) ) |
| 33 |
|
oveq2 |
⊢ ( 𝑗 = 𝑙 → ( 𝑚 𝑦 𝑗 ) = ( 𝑚 𝑦 𝑙 ) ) |
| 34 |
32 33
|
oveqan12d |
⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → ( ( 𝑖 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑗 ) ) = ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) |
| 35 |
34
|
mpteq2dv |
⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑗 ) ) ) = ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) |
| 36 |
35
|
oveq2d |
⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) ) |
| 37 |
36
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) ) → ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑖 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) ) |
| 38 |
|
simp2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) |
| 39 |
|
simp3 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑙 ∈ 𝑁 ) |
| 40 |
|
ovexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) ∈ V ) |
| 41 |
31 37 38 39 40
|
ovmpod |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑘 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) 𝑙 ) = ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) ) |
| 42 |
41
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) 𝑙 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) ) ) |
| 43 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 44 |
|
ringcmn |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) |
| 45 |
13 44
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ CMnd ) |
| 46 |
45
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑅 ∈ CMnd ) |
| 47 |
46
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑅 ∈ CMnd ) |
| 48 |
4
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 49 |
13 48
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Ring ) |
| 50 |
|
ringmnd |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Mnd ) |
| 51 |
49 50
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Mnd ) |
| 52 |
51
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ Mnd ) |
| 53 |
52
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑃 ∈ Mnd ) |
| 54 |
15
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
| 55 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 56 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 57 |
49
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ Ring ) |
| 58 |
4
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 59 |
13 58
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ LMod ) |
| 60 |
59
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ LMod ) |
| 61 |
55 56 57 60
|
asclghm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( algSc ‘ 𝑃 ) ∈ ( ( Scalar ‘ 𝑃 ) GrpHom 𝑃 ) ) |
| 62 |
4
|
ply1sca |
⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 63 |
62
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 64 |
63
|
oveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑅 GrpHom 𝑃 ) = ( ( Scalar ‘ 𝑃 ) GrpHom 𝑃 ) ) |
| 65 |
61 64
|
eleqtrrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( algSc ‘ 𝑃 ) ∈ ( 𝑅 GrpHom 𝑃 ) ) |
| 66 |
|
ghmmhm |
⊢ ( ( algSc ‘ 𝑃 ) ∈ ( 𝑅 GrpHom 𝑃 ) → ( algSc ‘ 𝑃 ) ∈ ( 𝑅 MndHom 𝑃 ) ) |
| 67 |
65 66
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( algSc ‘ 𝑃 ) ∈ ( 𝑅 MndHom 𝑃 ) ) |
| 68 |
67
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( algSc ‘ 𝑃 ) ∈ ( 𝑅 MndHom 𝑃 ) ) |
| 69 |
68
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( algSc ‘ 𝑃 ) ∈ ( 𝑅 MndHom 𝑃 ) ) |
| 70 |
14
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 71 |
70
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 72 |
38
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) |
| 73 |
|
simpr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑚 ∈ 𝑁 ) |
| 74 |
19
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 75 |
74
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 76 |
75 16
|
sylibr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑥 ∈ 𝐵 ) |
| 77 |
2 11 3 72 73 76
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → ( 𝑘 𝑥 𝑚 ) ∈ ( Base ‘ 𝑅 ) ) |
| 78 |
39
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑙 ∈ 𝑁 ) |
| 79 |
2
|
fveq2i |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
| 80 |
3 79
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
| 81 |
80
|
eleq2i |
⊢ ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 82 |
81
|
biimpi |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 83 |
82
|
ad2antll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 84 |
83
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑦 ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 85 |
84
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑦 ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 86 |
85 81
|
sylibr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑦 ∈ 𝐵 ) |
| 87 |
2 11 3 73 78 86
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → ( 𝑚 𝑦 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) |
| 88 |
11 12
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑘 𝑥 𝑚 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑚 𝑦 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 89 |
71 77 87 88
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 90 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) = ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) |
| 91 |
|
ovexd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ∈ V ) |
| 92 |
|
fvexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 93 |
90 54 91 92
|
fsuppmptdm |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 94 |
11 43 47 53 54 69 89 93
|
gsummptmhm |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑃 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑅 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) ) ) |
| 95 |
4
|
ply1assa |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |
| 96 |
95
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ AssAlg ) |
| 97 |
55 56
|
asclrhm |
⊢ ( 𝑃 ∈ AssAlg → ( algSc ‘ 𝑃 ) ∈ ( ( Scalar ‘ 𝑃 ) RingHom 𝑃 ) ) |
| 98 |
96 97
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( algSc ‘ 𝑃 ) ∈ ( ( Scalar ‘ 𝑃 ) RingHom 𝑃 ) ) |
| 99 |
63
|
oveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑅 RingHom 𝑃 ) = ( ( Scalar ‘ 𝑃 ) RingHom 𝑃 ) ) |
| 100 |
98 99
|
eleqtrrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( algSc ‘ 𝑃 ) ∈ ( 𝑅 RingHom 𝑃 ) ) |
| 101 |
100
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( algSc ‘ 𝑃 ) ∈ ( 𝑅 RingHom 𝑃 ) ) |
| 102 |
101
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( algSc ‘ 𝑃 ) ∈ ( 𝑅 RingHom 𝑃 ) ) |
| 103 |
102
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → ( algSc ‘ 𝑃 ) ∈ ( 𝑅 RingHom 𝑃 ) ) |
| 104 |
25
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
| 105 |
104
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
| 106 |
105 23
|
sylibr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → 𝑦 ∈ 𝐵 ) |
| 107 |
2 11 3 73 78 106
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → ( 𝑚 𝑦 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) |
| 108 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 109 |
11 12 108
|
rhmmul |
⊢ ( ( ( algSc ‘ 𝑃 ) ∈ ( 𝑅 RingHom 𝑃 ) ∧ ( 𝑘 𝑥 𝑚 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑚 𝑦 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) = ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ) ) |
| 110 |
103 77 107 109
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) ∧ 𝑚 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) = ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ) ) |
| 111 |
110
|
mpteq2dva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑚 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) = ( 𝑚 ∈ 𝑁 ↦ ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ) ) ) |
| 112 |
111
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( 𝑃 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( ( 𝑘 𝑥 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑦 𝑙 ) ) ) ) ) = ( 𝑃 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ) ) ) ) |
| 113 |
42 94 112
|
3eqtr2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) 𝑙 ) ) = ( 𝑃 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ) ) ) ) |
| 114 |
113
|
mpoeq3dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) 𝑙 ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ) ) ) ) ) |
| 115 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 116 |
|
eqid |
⊢ ( .r ‘ 𝐶 ) = ( .r ‘ 𝐶 ) |
| 117 |
49
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ Ring ) |
| 118 |
|
eqid |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) |
| 119 |
|
eqid |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) |
| 120 |
14
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 121 |
|
simp2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 122 |
|
simp3 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
| 123 |
|
simp1rl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑥 ∈ 𝐵 ) |
| 124 |
2 11 3 121 122 123
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑥 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 125 |
4 55 11 115
|
ply1sclcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 𝑥 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 126 |
120 124 125
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 127 |
|
simp1rr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑦 ∈ 𝐵 ) |
| 128 |
2 11 3 121 122 127
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑦 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 129 |
4 55 11 115
|
ply1sclcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 𝑦 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 130 |
120 128 129
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 131 |
|
oveq12 |
⊢ ( ( 𝑘 = 𝑖 ∧ 𝑚 = 𝑗 ) → ( 𝑘 𝑥 𝑚 ) = ( 𝑖 𝑥 𝑗 ) ) |
| 132 |
131
|
fveq2d |
⊢ ( ( 𝑘 = 𝑖 ∧ 𝑚 = 𝑗 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) |
| 133 |
132
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑘 = 𝑖 ∧ 𝑚 = 𝑗 ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) |
| 134 |
|
oveq12 |
⊢ ( ( 𝑚 = 𝑖 ∧ 𝑙 = 𝑗 ) → ( 𝑚 𝑦 𝑙 ) = ( 𝑖 𝑦 𝑗 ) ) |
| 135 |
134
|
fveq2d |
⊢ ( ( 𝑚 = 𝑖 ∧ 𝑙 = 𝑗 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) |
| 136 |
135
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑚 = 𝑖 ∧ 𝑙 = 𝑗 ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) |
| 137 |
|
fvexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑘 ∈ 𝑁 ∧ 𝑚 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ∈ V ) |
| 138 |
|
fvexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑚 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ∈ V ) |
| 139 |
5 115 116 108 117 15 118 119 126 130 133 136 137 138
|
mpomatmul |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) ( .r ‘ 𝐶 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑚 ∈ 𝑁 ↦ ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 𝑥 𝑚 ) ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑚 𝑦 𝑙 ) ) ) ) ) ) ) |
| 140 |
114 139
|
eqtr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) 𝑙 ) ) ) = ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) ( .r ‘ 𝐶 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) ) ) |
| 141 |
2
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 142 |
13 141
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴 ∈ Ring ) |
| 143 |
142
|
anim1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐴 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 144 |
|
3anass |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝐴 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 145 |
143 144
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐴 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 146 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
| 147 |
3 146
|
ringcl |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ∈ 𝐵 ) |
| 148 |
145 147
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ∈ 𝐵 ) |
| 149 |
1 2 3 4 55
|
mat2pmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ∈ 𝐵 ) → ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) 𝑙 ) ) ) ) |
| 150 |
15 14 148 149
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑘 ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) 𝑙 ) ) ) ) |
| 151 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 152 |
151
|
anim2i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑥 ∈ 𝐵 ) ) |
| 153 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑥 ∈ 𝐵 ) ) |
| 154 |
152 153
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥 ∈ 𝐵 ) ) |
| 155 |
1 2 3 4 55
|
mat2pmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) ) |
| 156 |
154 155
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) ) |
| 157 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 158 |
157
|
anim2i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑦 ∈ 𝐵 ) ) |
| 159 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦 ∈ 𝐵 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑦 ∈ 𝐵 ) ) |
| 160 |
158 159
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦 ∈ 𝐵 ) ) |
| 161 |
1 2 3 4 55
|
mat2pmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) ) |
| 162 |
160 161
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) ) |
| 163 |
156 162
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝐶 ) ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑥 𝑗 ) ) ) ( .r ‘ 𝐶 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 𝑦 𝑗 ) ) ) ) ) |
| 164 |
140 150 163
|
3eqtr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝐶 ) ( 𝑇 ‘ 𝑦 ) ) ) |
| 165 |
164
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑇 ‘ ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ( .r ‘ 𝐶 ) ( 𝑇 ‘ 𝑦 ) ) ) |