| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat2pmatbas.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 2 |  | mat2pmatbas.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | mat2pmatbas.b |  |-  B = ( Base ` A ) | 
						
							| 4 |  | mat2pmatbas.p |  |-  P = ( Poly1 ` R ) | 
						
							| 5 |  | mat2pmatbas.c |  |-  C = ( N Mat P ) | 
						
							| 6 |  | mat2pmatbas0.h |  |-  H = ( Base ` C ) | 
						
							| 7 |  | eqid |  |-  ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) | 
						
							| 8 | 2 7 | matmulr |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( .r ` A ) = ( R maMul <. N , N , N >. ) ) | 
						
							| 10 | 9 | oveqdr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` A ) y ) = ( x ( R maMul <. N , N , N >. ) y ) ) | 
						
							| 11 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 12 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 13 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 14 | 13 | ad2antlr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> R e. Ring ) | 
						
							| 15 |  | simpll |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> N e. Fin ) | 
						
							| 16 | 3 | eleq2i |  |-  ( x e. B <-> x e. ( Base ` A ) ) | 
						
							| 17 | 16 | biimpi |  |-  ( x e. B -> x e. ( Base ` A ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( x e. B /\ y e. B ) -> x e. ( Base ` A ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> x e. ( Base ` A ) ) | 
						
							| 20 | 2 11 | matbas2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) | 
						
							| 22 | 19 21 | eleqtrrd |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> x e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 23 | 3 | eleq2i |  |-  ( y e. B <-> y e. ( Base ` A ) ) | 
						
							| 24 | 23 | biimpi |  |-  ( y e. B -> y e. ( Base ` A ) ) | 
						
							| 25 | 24 | ad2antll |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> y e. ( Base ` A ) ) | 
						
							| 26 | 20 | eleq2d |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( y e. ( ( Base ` R ) ^m ( N X. N ) ) <-> y e. ( Base ` A ) ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( y e. ( ( Base ` R ) ^m ( N X. N ) ) <-> y e. ( Base ` A ) ) ) | 
						
							| 28 | 25 27 | mpbird |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> y e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 29 | 7 11 12 14 15 15 15 22 28 | mamuval |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( x ( R maMul <. N , N , N >. ) y ) = ( i e. N , j e. N |-> ( R gsum ( m e. N |-> ( ( i x m ) ( .r ` R ) ( m y j ) ) ) ) ) ) | 
						
							| 30 | 10 29 | eqtrd |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` A ) y ) = ( i e. N , j e. N |-> ( R gsum ( m e. N |-> ( ( i x m ) ( .r ` R ) ( m y j ) ) ) ) ) ) | 
						
							| 31 | 30 | 3ad2ant1 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> ( x ( .r ` A ) y ) = ( i e. N , j e. N |-> ( R gsum ( m e. N |-> ( ( i x m ) ( .r ` R ) ( m y j ) ) ) ) ) ) | 
						
							| 32 |  | oveq1 |  |-  ( i = k -> ( i x m ) = ( k x m ) ) | 
						
							| 33 |  | oveq2 |  |-  ( j = l -> ( m y j ) = ( m y l ) ) | 
						
							| 34 | 32 33 | oveqan12d |  |-  ( ( i = k /\ j = l ) -> ( ( i x m ) ( .r ` R ) ( m y j ) ) = ( ( k x m ) ( .r ` R ) ( m y l ) ) ) | 
						
							| 35 | 34 | mpteq2dv |  |-  ( ( i = k /\ j = l ) -> ( m e. N |-> ( ( i x m ) ( .r ` R ) ( m y j ) ) ) = ( m e. N |-> ( ( k x m ) ( .r ` R ) ( m y l ) ) ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( ( i = k /\ j = l ) -> ( R gsum ( m e. N |-> ( ( i x m ) ( .r ` R ) ( m y j ) ) ) ) = ( R gsum ( m e. N |-> ( ( k x m ) ( .r ` R ) ( m y l ) ) ) ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ ( i = k /\ j = l ) ) -> ( R gsum ( m e. N |-> ( ( i x m ) ( .r ` R ) ( m y j ) ) ) ) = ( R gsum ( m e. N |-> ( ( k x m ) ( .r ` R ) ( m y l ) ) ) ) ) | 
						
							| 38 |  | simp2 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> k e. N ) | 
						
							| 39 |  | simp3 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> l e. N ) | 
						
							| 40 |  | ovexd |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> ( R gsum ( m e. N |-> ( ( k x m ) ( .r ` R ) ( m y l ) ) ) ) e. _V ) | 
						
							| 41 | 31 37 38 39 40 | ovmpod |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> ( k ( x ( .r ` A ) y ) l ) = ( R gsum ( m e. N |-> ( ( k x m ) ( .r ` R ) ( m y l ) ) ) ) ) | 
						
							| 42 | 41 | fveq2d |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> ( ( algSc ` P ) ` ( k ( x ( .r ` A ) y ) l ) ) = ( ( algSc ` P ) ` ( R gsum ( m e. N |-> ( ( k x m ) ( .r ` R ) ( m y l ) ) ) ) ) ) | 
						
							| 43 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 44 |  | ringcmn |  |-  ( R e. Ring -> R e. CMnd ) | 
						
							| 45 | 13 44 | syl |  |-  ( R e. CRing -> R e. CMnd ) | 
						
							| 46 | 45 | ad2antlr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> R e. CMnd ) | 
						
							| 47 | 46 | 3ad2ant1 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> R e. CMnd ) | 
						
							| 48 | 4 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 49 | 13 48 | syl |  |-  ( R e. CRing -> P e. Ring ) | 
						
							| 50 |  | ringmnd |  |-  ( P e. Ring -> P e. Mnd ) | 
						
							| 51 | 49 50 | syl |  |-  ( R e. CRing -> P e. Mnd ) | 
						
							| 52 | 51 | ad2antlr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> P e. Mnd ) | 
						
							| 53 | 52 | 3ad2ant1 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> P e. Mnd ) | 
						
							| 54 | 15 | 3ad2ant1 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> N e. Fin ) | 
						
							| 55 |  | eqid |  |-  ( algSc ` P ) = ( algSc ` P ) | 
						
							| 56 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 57 | 49 | adantl |  |-  ( ( N e. Fin /\ R e. CRing ) -> P e. Ring ) | 
						
							| 58 | 4 | ply1lmod |  |-  ( R e. Ring -> P e. LMod ) | 
						
							| 59 | 13 58 | syl |  |-  ( R e. CRing -> P e. LMod ) | 
						
							| 60 | 59 | adantl |  |-  ( ( N e. Fin /\ R e. CRing ) -> P e. LMod ) | 
						
							| 61 | 55 56 57 60 | asclghm |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( algSc ` P ) e. ( ( Scalar ` P ) GrpHom P ) ) | 
						
							| 62 | 4 | ply1sca |  |-  ( R e. CRing -> R = ( Scalar ` P ) ) | 
						
							| 63 | 62 | adantl |  |-  ( ( N e. Fin /\ R e. CRing ) -> R = ( Scalar ` P ) ) | 
						
							| 64 | 63 | oveq1d |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( R GrpHom P ) = ( ( Scalar ` P ) GrpHom P ) ) | 
						
							| 65 | 61 64 | eleqtrrd |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( algSc ` P ) e. ( R GrpHom P ) ) | 
						
							| 66 |  | ghmmhm |  |-  ( ( algSc ` P ) e. ( R GrpHom P ) -> ( algSc ` P ) e. ( R MndHom P ) ) | 
						
							| 67 | 65 66 | syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( algSc ` P ) e. ( R MndHom P ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( algSc ` P ) e. ( R MndHom P ) ) | 
						
							| 69 | 68 | 3ad2ant1 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> ( algSc ` P ) e. ( R MndHom P ) ) | 
						
							| 70 | 14 | 3ad2ant1 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> R e. Ring ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> R e. Ring ) | 
						
							| 72 | 38 | adantr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> k e. N ) | 
						
							| 73 |  | simpr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> m e. N ) | 
						
							| 74 | 19 | 3ad2ant1 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> x e. ( Base ` A ) ) | 
						
							| 75 | 74 | adantr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> x e. ( Base ` A ) ) | 
						
							| 76 | 75 16 | sylibr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> x e. B ) | 
						
							| 77 | 2 11 3 72 73 76 | matecld |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> ( k x m ) e. ( Base ` R ) ) | 
						
							| 78 | 39 | adantr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> l e. N ) | 
						
							| 79 | 2 | fveq2i |  |-  ( Base ` A ) = ( Base ` ( N Mat R ) ) | 
						
							| 80 | 3 79 | eqtri |  |-  B = ( Base ` ( N Mat R ) ) | 
						
							| 81 | 80 | eleq2i |  |-  ( y e. B <-> y e. ( Base ` ( N Mat R ) ) ) | 
						
							| 82 | 81 | biimpi |  |-  ( y e. B -> y e. ( Base ` ( N Mat R ) ) ) | 
						
							| 83 | 82 | ad2antll |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> y e. ( Base ` ( N Mat R ) ) ) | 
						
							| 84 | 83 | 3ad2ant1 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> y e. ( Base ` ( N Mat R ) ) ) | 
						
							| 85 | 84 | adantr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> y e. ( Base ` ( N Mat R ) ) ) | 
						
							| 86 | 85 81 | sylibr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> y e. B ) | 
						
							| 87 | 2 11 3 73 78 86 | matecld |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> ( m y l ) e. ( Base ` R ) ) | 
						
							| 88 | 11 12 | ringcl |  |-  ( ( R e. Ring /\ ( k x m ) e. ( Base ` R ) /\ ( m y l ) e. ( Base ` R ) ) -> ( ( k x m ) ( .r ` R ) ( m y l ) ) e. ( Base ` R ) ) | 
						
							| 89 | 71 77 87 88 | syl3anc |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> ( ( k x m ) ( .r ` R ) ( m y l ) ) e. ( Base ` R ) ) | 
						
							| 90 |  | eqid |  |-  ( m e. N |-> ( ( k x m ) ( .r ` R ) ( m y l ) ) ) = ( m e. N |-> ( ( k x m ) ( .r ` R ) ( m y l ) ) ) | 
						
							| 91 |  | ovexd |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> ( ( k x m ) ( .r ` R ) ( m y l ) ) e. _V ) | 
						
							| 92 |  | fvexd |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> ( 0g ` R ) e. _V ) | 
						
							| 93 | 90 54 91 92 | fsuppmptdm |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> ( m e. N |-> ( ( k x m ) ( .r ` R ) ( m y l ) ) ) finSupp ( 0g ` R ) ) | 
						
							| 94 | 11 43 47 53 54 69 89 93 | gsummptmhm |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> ( P gsum ( m e. N |-> ( ( algSc ` P ) ` ( ( k x m ) ( .r ` R ) ( m y l ) ) ) ) ) = ( ( algSc ` P ) ` ( R gsum ( m e. N |-> ( ( k x m ) ( .r ` R ) ( m y l ) ) ) ) ) ) | 
						
							| 95 | 4 | ply1assa |  |-  ( R e. CRing -> P e. AssAlg ) | 
						
							| 96 | 95 | adantl |  |-  ( ( N e. Fin /\ R e. CRing ) -> P e. AssAlg ) | 
						
							| 97 | 55 56 | asclrhm |  |-  ( P e. AssAlg -> ( algSc ` P ) e. ( ( Scalar ` P ) RingHom P ) ) | 
						
							| 98 | 96 97 | syl |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( algSc ` P ) e. ( ( Scalar ` P ) RingHom P ) ) | 
						
							| 99 | 63 | oveq1d |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( R RingHom P ) = ( ( Scalar ` P ) RingHom P ) ) | 
						
							| 100 | 98 99 | eleqtrrd |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( algSc ` P ) e. ( R RingHom P ) ) | 
						
							| 101 | 100 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( algSc ` P ) e. ( R RingHom P ) ) | 
						
							| 102 | 101 | 3ad2ant1 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> ( algSc ` P ) e. ( R RingHom P ) ) | 
						
							| 103 | 102 | adantr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> ( algSc ` P ) e. ( R RingHom P ) ) | 
						
							| 104 | 25 | 3ad2ant1 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> y e. ( Base ` A ) ) | 
						
							| 105 | 104 | adantr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> y e. ( Base ` A ) ) | 
						
							| 106 | 105 23 | sylibr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> y e. B ) | 
						
							| 107 | 2 11 3 73 78 106 | matecld |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> ( m y l ) e. ( Base ` R ) ) | 
						
							| 108 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 109 | 11 12 108 | rhmmul |  |-  ( ( ( algSc ` P ) e. ( R RingHom P ) /\ ( k x m ) e. ( Base ` R ) /\ ( m y l ) e. ( Base ` R ) ) -> ( ( algSc ` P ) ` ( ( k x m ) ( .r ` R ) ( m y l ) ) ) = ( ( ( algSc ` P ) ` ( k x m ) ) ( .r ` P ) ( ( algSc ` P ) ` ( m y l ) ) ) ) | 
						
							| 110 | 103 77 107 109 | syl3anc |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) /\ m e. N ) -> ( ( algSc ` P ) ` ( ( k x m ) ( .r ` R ) ( m y l ) ) ) = ( ( ( algSc ` P ) ` ( k x m ) ) ( .r ` P ) ( ( algSc ` P ) ` ( m y l ) ) ) ) | 
						
							| 111 | 110 | mpteq2dva |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> ( m e. N |-> ( ( algSc ` P ) ` ( ( k x m ) ( .r ` R ) ( m y l ) ) ) ) = ( m e. N |-> ( ( ( algSc ` P ) ` ( k x m ) ) ( .r ` P ) ( ( algSc ` P ) ` ( m y l ) ) ) ) ) | 
						
							| 112 | 111 | oveq2d |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> ( P gsum ( m e. N |-> ( ( algSc ` P ) ` ( ( k x m ) ( .r ` R ) ( m y l ) ) ) ) ) = ( P gsum ( m e. N |-> ( ( ( algSc ` P ) ` ( k x m ) ) ( .r ` P ) ( ( algSc ` P ) ` ( m y l ) ) ) ) ) ) | 
						
							| 113 | 42 94 112 | 3eqtr2d |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ l e. N ) -> ( ( algSc ` P ) ` ( k ( x ( .r ` A ) y ) l ) ) = ( P gsum ( m e. N |-> ( ( ( algSc ` P ) ` ( k x m ) ) ( .r ` P ) ( ( algSc ` P ) ` ( m y l ) ) ) ) ) ) | 
						
							| 114 | 113 | mpoeq3dva |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( k e. N , l e. N |-> ( ( algSc ` P ) ` ( k ( x ( .r ` A ) y ) l ) ) ) = ( k e. N , l e. N |-> ( P gsum ( m e. N |-> ( ( ( algSc ` P ) ` ( k x m ) ) ( .r ` P ) ( ( algSc ` P ) ` ( m y l ) ) ) ) ) ) ) | 
						
							| 115 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 116 |  | eqid |  |-  ( .r ` C ) = ( .r ` C ) | 
						
							| 117 | 49 | ad2antlr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> P e. Ring ) | 
						
							| 118 |  | eqid |  |-  ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i x j ) ) ) = ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i x j ) ) ) | 
						
							| 119 |  | eqid |  |-  ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i y j ) ) ) = ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i y j ) ) ) | 
						
							| 120 | 14 | 3ad2ant1 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ i e. N /\ j e. N ) -> R e. Ring ) | 
						
							| 121 |  | simp2 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ i e. N /\ j e. N ) -> i e. N ) | 
						
							| 122 |  | simp3 |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ i e. N /\ j e. N ) -> j e. N ) | 
						
							| 123 |  | simp1rl |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ i e. N /\ j e. N ) -> x e. B ) | 
						
							| 124 | 2 11 3 121 122 123 | matecld |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ i e. N /\ j e. N ) -> ( i x j ) e. ( Base ` R ) ) | 
						
							| 125 | 4 55 11 115 | ply1sclcl |  |-  ( ( R e. Ring /\ ( i x j ) e. ( Base ` R ) ) -> ( ( algSc ` P ) ` ( i x j ) ) e. ( Base ` P ) ) | 
						
							| 126 | 120 124 125 | syl2anc |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ i e. N /\ j e. N ) -> ( ( algSc ` P ) ` ( i x j ) ) e. ( Base ` P ) ) | 
						
							| 127 |  | simp1rr |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ i e. N /\ j e. N ) -> y e. B ) | 
						
							| 128 | 2 11 3 121 122 127 | matecld |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ i e. N /\ j e. N ) -> ( i y j ) e. ( Base ` R ) ) | 
						
							| 129 | 4 55 11 115 | ply1sclcl |  |-  ( ( R e. Ring /\ ( i y j ) e. ( Base ` R ) ) -> ( ( algSc ` P ) ` ( i y j ) ) e. ( Base ` P ) ) | 
						
							| 130 | 120 128 129 | syl2anc |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ i e. N /\ j e. N ) -> ( ( algSc ` P ) ` ( i y j ) ) e. ( Base ` P ) ) | 
						
							| 131 |  | oveq12 |  |-  ( ( k = i /\ m = j ) -> ( k x m ) = ( i x j ) ) | 
						
							| 132 | 131 | fveq2d |  |-  ( ( k = i /\ m = j ) -> ( ( algSc ` P ) ` ( k x m ) ) = ( ( algSc ` P ) ` ( i x j ) ) ) | 
						
							| 133 | 132 | adantl |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ ( k = i /\ m = j ) ) -> ( ( algSc ` P ) ` ( k x m ) ) = ( ( algSc ` P ) ` ( i x j ) ) ) | 
						
							| 134 |  | oveq12 |  |-  ( ( m = i /\ l = j ) -> ( m y l ) = ( i y j ) ) | 
						
							| 135 | 134 | fveq2d |  |-  ( ( m = i /\ l = j ) -> ( ( algSc ` P ) ` ( m y l ) ) = ( ( algSc ` P ) ` ( i y j ) ) ) | 
						
							| 136 | 135 | adantl |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ ( m = i /\ l = j ) ) -> ( ( algSc ` P ) ` ( m y l ) ) = ( ( algSc ` P ) ` ( i y j ) ) ) | 
						
							| 137 |  | fvexd |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ k e. N /\ m e. N ) -> ( ( algSc ` P ) ` ( k x m ) ) e. _V ) | 
						
							| 138 |  | fvexd |  |-  ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) /\ m e. N /\ l e. N ) -> ( ( algSc ` P ) ` ( m y l ) ) e. _V ) | 
						
							| 139 | 5 115 116 108 117 15 118 119 126 130 133 136 137 138 | mpomatmul |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i x j ) ) ) ( .r ` C ) ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i y j ) ) ) ) = ( k e. N , l e. N |-> ( P gsum ( m e. N |-> ( ( ( algSc ` P ) ` ( k x m ) ) ( .r ` P ) ( ( algSc ` P ) ` ( m y l ) ) ) ) ) ) ) | 
						
							| 140 | 114 139 | eqtr4d |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( k e. N , l e. N |-> ( ( algSc ` P ) ` ( k ( x ( .r ` A ) y ) l ) ) ) = ( ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i x j ) ) ) ( .r ` C ) ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i y j ) ) ) ) ) | 
						
							| 141 | 2 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 142 | 13 141 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) | 
						
							| 143 | 142 | anim1i |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( A e. Ring /\ ( x e. B /\ y e. B ) ) ) | 
						
							| 144 |  | 3anass |  |-  ( ( A e. Ring /\ x e. B /\ y e. B ) <-> ( A e. Ring /\ ( x e. B /\ y e. B ) ) ) | 
						
							| 145 | 143 144 | sylibr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( A e. Ring /\ x e. B /\ y e. B ) ) | 
						
							| 146 |  | eqid |  |-  ( .r ` A ) = ( .r ` A ) | 
						
							| 147 | 3 146 | ringcl |  |-  ( ( A e. Ring /\ x e. B /\ y e. B ) -> ( x ( .r ` A ) y ) e. B ) | 
						
							| 148 | 145 147 | syl |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` A ) y ) e. B ) | 
						
							| 149 | 1 2 3 4 55 | mat2pmatval |  |-  ( ( N e. Fin /\ R e. Ring /\ ( x ( .r ` A ) y ) e. B ) -> ( T ` ( x ( .r ` A ) y ) ) = ( k e. N , l e. N |-> ( ( algSc ` P ) ` ( k ( x ( .r ` A ) y ) l ) ) ) ) | 
						
							| 150 | 15 14 148 149 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( T ` ( x ( .r ` A ) y ) ) = ( k e. N , l e. N |-> ( ( algSc ` P ) ` ( k ( x ( .r ` A ) y ) l ) ) ) ) | 
						
							| 151 |  | simpl |  |-  ( ( x e. B /\ y e. B ) -> x e. B ) | 
						
							| 152 | 151 | anim2i |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( ( N e. Fin /\ R e. CRing ) /\ x e. B ) ) | 
						
							| 153 |  | df-3an |  |-  ( ( N e. Fin /\ R e. CRing /\ x e. B ) <-> ( ( N e. Fin /\ R e. CRing ) /\ x e. B ) ) | 
						
							| 154 | 152 153 | sylibr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( N e. Fin /\ R e. CRing /\ x e. B ) ) | 
						
							| 155 | 1 2 3 4 55 | mat2pmatval |  |-  ( ( N e. Fin /\ R e. CRing /\ x e. B ) -> ( T ` x ) = ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i x j ) ) ) ) | 
						
							| 156 | 154 155 | syl |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( T ` x ) = ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i x j ) ) ) ) | 
						
							| 157 |  | simpr |  |-  ( ( x e. B /\ y e. B ) -> y e. B ) | 
						
							| 158 | 157 | anim2i |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( ( N e. Fin /\ R e. CRing ) /\ y e. B ) ) | 
						
							| 159 |  | df-3an |  |-  ( ( N e. Fin /\ R e. CRing /\ y e. B ) <-> ( ( N e. Fin /\ R e. CRing ) /\ y e. B ) ) | 
						
							| 160 | 158 159 | sylibr |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( N e. Fin /\ R e. CRing /\ y e. B ) ) | 
						
							| 161 | 1 2 3 4 55 | mat2pmatval |  |-  ( ( N e. Fin /\ R e. CRing /\ y e. B ) -> ( T ` y ) = ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i y j ) ) ) ) | 
						
							| 162 | 160 161 | syl |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( T ` y ) = ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i y j ) ) ) ) | 
						
							| 163 | 156 162 | oveq12d |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( ( T ` x ) ( .r ` C ) ( T ` y ) ) = ( ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i x j ) ) ) ( .r ` C ) ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i y j ) ) ) ) ) | 
						
							| 164 | 140 150 163 | 3eqtr4d |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( x e. B /\ y e. B ) ) -> ( T ` ( x ( .r ` A ) y ) ) = ( ( T ` x ) ( .r ` C ) ( T ` y ) ) ) | 
						
							| 165 | 164 | ralrimivva |  |-  ( ( N e. Fin /\ R e. CRing ) -> A. x e. B A. y e. B ( T ` ( x ( .r ` A ) y ) ) = ( ( T ` x ) ( .r ` C ) ( T ` y ) ) ) |