| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyaddlem.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
| 2 |
|
plyaddlem.2 |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
| 3 |
|
plyaddlem.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 4 |
|
plyaddlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 5 |
|
plyaddlem.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 6 |
|
plyaddlem.b |
⊢ ( 𝜑 → 𝐵 : ℕ0 ⟶ ℂ ) |
| 7 |
|
plyaddlem.a2 |
⊢ ( 𝜑 → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) |
| 8 |
|
plyaddlem.b2 |
⊢ ( 𝜑 → ( 𝐵 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
| 9 |
|
plyaddlem.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 10 |
|
plyaddlem.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 11 |
|
cnex |
⊢ ℂ ∈ V |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
| 13 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ V |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ V ) |
| 15 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ V |
| 16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ V ) |
| 17 |
12 14 16 9 10
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) = ( 𝑧 ∈ ℂ ↦ ( Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 18 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∈ Fin ) |
| 19 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
| 20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 21 |
20
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 22 |
|
expcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 23 |
22
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 24 |
21 23
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 25 |
19 24
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 26 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝐵 : ℕ0 ⟶ ℂ ) |
| 27 |
26
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℂ ) |
| 28 |
27 23
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 29 |
19 28
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) → ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 30 |
18 25 29
|
fsumadd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( Σ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 31 |
5
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn ℕ0 ) |
| 32 |
6
|
ffnd |
⊢ ( 𝜑 → 𝐵 Fn ℕ0 ) |
| 33 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 35 |
|
inidm |
⊢ ( ℕ0 ∩ ℕ0 ) = ℕ0 |
| 36 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 37 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 38 |
31 32 34 34 35 36 37
|
ofval |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ∘f + 𝐵 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) + ( 𝐵 ‘ 𝑘 ) ) ) |
| 39 |
38
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ∘f + 𝐵 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) + ( 𝐵 ‘ 𝑘 ) ) ) |
| 40 |
39
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 ∘f + 𝐵 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( ( 𝐴 ‘ 𝑘 ) + ( 𝐵 ‘ 𝑘 ) ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 41 |
21 27 23
|
adddird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 ‘ 𝑘 ) + ( 𝐵 ‘ 𝑘 ) ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 42 |
40 41
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 ∘f + 𝐵 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 43 |
19 42
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) → ( ( ( 𝐴 ∘f + 𝐵 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 44 |
43
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ( ( ( 𝐴 ∘f + 𝐵 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) + ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 45 |
3
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 46 |
4 3
|
ifcld |
⊢ ( 𝜑 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℕ0 ) |
| 47 |
46
|
nn0zd |
⊢ ( 𝜑 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℤ ) |
| 48 |
3
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 49 |
4
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 50 |
|
max1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
| 51 |
48 49 50
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
| 52 |
|
eluz2 |
⊢ ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℤ ∧ 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 53 |
45 47 51 52
|
syl3anbrc |
⊢ ( 𝜑 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 54 |
|
fzss2 |
⊢ ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 0 ... 𝑀 ) ⊆ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 55 |
53 54
|
syl |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ⊆ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 0 ... 𝑀 ) ⊆ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 57 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) → 𝑘 ∈ ℕ0 ) |
| 58 |
57 24
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 59 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) → ¬ 𝑘 ∈ ( 0 ... 𝑀 ) ) |
| 60 |
59
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ¬ 𝑘 ∈ ( 0 ... 𝑀 ) ) |
| 61 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) → 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 62 |
61 19
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
| 63 |
62
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 64 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 65 |
|
peano2nn0 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ0 ) |
| 66 |
3 65
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ0 ) |
| 67 |
66 64
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 68 |
|
uzsplit |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 0 ) = ( ( 0 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 69 |
67 68
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 0 ) = ( ( 0 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 70 |
64 69
|
eqtrid |
⊢ ( 𝜑 → ℕ0 = ( ( 0 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 71 |
3
|
nn0cnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 72 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 73 |
|
pncan |
⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 74 |
71 72 73
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 75 |
74
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ( 𝑀 + 1 ) − 1 ) ) = ( 0 ... 𝑀 ) ) |
| 76 |
75
|
uneq1d |
⊢ ( 𝜑 → ( ( 0 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = ( ( 0 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 77 |
70 76
|
eqtrd |
⊢ ( 𝜑 → ℕ0 = ( ( 0 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 78 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ℕ0 = ( ( 0 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 79 |
63 78
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → 𝑘 ∈ ( ( 0 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 80 |
|
elun |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ↔ ( 𝑘 ∈ ( 0 ... 𝑀 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 81 |
79 80
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝑀 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 82 |
81
|
ord |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( ¬ 𝑘 ∈ ( 0 ... 𝑀 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 83 |
60 82
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 84 |
5
|
ffund |
⊢ ( 𝜑 → Fun 𝐴 ) |
| 85 |
|
ssun2 |
⊢ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ ( ( 0 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 86 |
85 70
|
sseqtrrid |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ ℕ0 ) |
| 87 |
5
|
fdmd |
⊢ ( 𝜑 → dom 𝐴 = ℕ0 ) |
| 88 |
86 87
|
sseqtrrd |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ dom 𝐴 ) |
| 89 |
|
funfvima2 |
⊢ ( ( Fun 𝐴 ∧ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ dom 𝐴 ) → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 90 |
84 88 89
|
syl2anc |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 91 |
90
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 92 |
83 91
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 93 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) |
| 94 |
92 93
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 𝐴 ‘ 𝑘 ) ∈ { 0 } ) |
| 95 |
|
elsni |
⊢ ( ( 𝐴 ‘ 𝑘 ) ∈ { 0 } → ( 𝐴 ‘ 𝑘 ) = 0 ) |
| 96 |
94 95
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 𝐴 ‘ 𝑘 ) = 0 ) |
| 97 |
96
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( 0 · ( 𝑧 ↑ 𝑘 ) ) ) |
| 98 |
62 23
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 99 |
98
|
mul02d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( 0 · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
| 100 |
97 99
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑀 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
| 101 |
56 58 100 18
|
fsumss |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 102 |
4
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 103 |
|
max2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
| 104 |
48 49 103
|
syl2anc |
⊢ ( 𝜑 → 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
| 105 |
|
eluz2 |
⊢ ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℤ ∧ 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 106 |
102 47 104 105
|
syl3anbrc |
⊢ ( 𝜑 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 107 |
|
fzss2 |
⊢ ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ... 𝑁 ) ⊆ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 108 |
106 107
|
syl |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ⊆ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 109 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 0 ... 𝑁 ) ⊆ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 110 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
| 111 |
110 28
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 112 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) → ¬ 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 113 |
112
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ¬ 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 114 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 115 |
114 19
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 116 |
115
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 117 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 118 |
4 117
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 119 |
118 64
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 120 |
|
uzsplit |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 0 ) = ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 121 |
119 120
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 0 ) = ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 122 |
64 121
|
eqtrid |
⊢ ( 𝜑 → ℕ0 = ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 123 |
4
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 124 |
|
pncan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 125 |
123 72 124
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 126 |
125
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 0 ... 𝑁 ) ) |
| 127 |
126
|
uneq1d |
⊢ ( 𝜑 → ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 128 |
122 127
|
eqtrd |
⊢ ( 𝜑 → ℕ0 = ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 129 |
128
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ℕ0 = ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 130 |
116 129
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → 𝑘 ∈ ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 131 |
|
elun |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ↔ ( 𝑘 ∈ ( 0 ... 𝑁 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 132 |
130 131
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 133 |
132
|
ord |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( ¬ 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 134 |
113 133
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
| 135 |
6
|
ffund |
⊢ ( 𝜑 → Fun 𝐵 ) |
| 136 |
|
ssun2 |
⊢ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
| 137 |
136 122
|
sseqtrrid |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ℕ0 ) |
| 138 |
6
|
fdmd |
⊢ ( 𝜑 → dom 𝐵 = ℕ0 ) |
| 139 |
137 138
|
sseqtrrd |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ dom 𝐵 ) |
| 140 |
|
funfvima2 |
⊢ ( ( Fun 𝐵 ∧ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ dom 𝐵 ) → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ( 𝐵 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 141 |
135 139 140
|
syl2anc |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ( 𝐵 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 142 |
141
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ( 𝐵 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 143 |
134 142
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ( 𝐵 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 144 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝐵 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
| 145 |
143 144
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝐵 ‘ 𝑘 ) ∈ { 0 } ) |
| 146 |
|
elsni |
⊢ ( ( 𝐵 ‘ 𝑘 ) ∈ { 0 } → ( 𝐵 ‘ 𝑘 ) = 0 ) |
| 147 |
145 146
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝐵 ‘ 𝑘 ) = 0 ) |
| 148 |
147
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( 0 · ( 𝑧 ↑ 𝑘 ) ) ) |
| 149 |
115 23
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 150 |
149
|
mul02d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( 0 · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
| 151 |
148 150
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ∖ ( 0 ... 𝑁 ) ) ) → ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
| 152 |
109 111 151 18
|
fsumss |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 153 |
101 152
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( Σ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 154 |
30 44 153
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ( ( ( 𝐴 ∘f + 𝐵 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 155 |
154
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ( ( ( 𝐴 ∘f + 𝐵 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) + Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 156 |
17 155
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ( ( ( 𝐴 ∘f + 𝐵 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |