| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyaddlem.1 |
|
| 2 |
|
plyaddlem.2 |
|
| 3 |
|
plyaddlem.m |
|
| 4 |
|
plyaddlem.n |
|
| 5 |
|
plyaddlem.a |
|
| 6 |
|
plyaddlem.b |
|
| 7 |
|
plyaddlem.a2 |
|
| 8 |
|
plyaddlem.b2 |
|
| 9 |
|
plyaddlem.f |
|
| 10 |
|
plyaddlem.g |
|
| 11 |
|
cnex |
|
| 12 |
11
|
a1i |
|
| 13 |
|
sumex |
|
| 14 |
13
|
a1i |
|
| 15 |
|
sumex |
|
| 16 |
15
|
a1i |
|
| 17 |
12 14 16 9 10
|
offval2 |
|
| 18 |
|
fzfid |
|
| 19 |
|
elfznn0 |
|
| 20 |
5
|
adantr |
|
| 21 |
20
|
ffvelcdmda |
|
| 22 |
|
expcl |
|
| 23 |
22
|
adantll |
|
| 24 |
21 23
|
mulcld |
|
| 25 |
19 24
|
sylan2 |
|
| 26 |
6
|
adantr |
|
| 27 |
26
|
ffvelcdmda |
|
| 28 |
27 23
|
mulcld |
|
| 29 |
19 28
|
sylan2 |
|
| 30 |
18 25 29
|
fsumadd |
|
| 31 |
5
|
ffnd |
|
| 32 |
6
|
ffnd |
|
| 33 |
|
nn0ex |
|
| 34 |
33
|
a1i |
|
| 35 |
|
inidm |
|
| 36 |
|
eqidd |
|
| 37 |
|
eqidd |
|
| 38 |
31 32 34 34 35 36 37
|
ofval |
|
| 39 |
38
|
adantlr |
|
| 40 |
39
|
oveq1d |
|
| 41 |
21 27 23
|
adddird |
|
| 42 |
40 41
|
eqtrd |
|
| 43 |
19 42
|
sylan2 |
|
| 44 |
43
|
sumeq2dv |
|
| 45 |
3
|
nn0zd |
|
| 46 |
4 3
|
ifcld |
|
| 47 |
46
|
nn0zd |
|
| 48 |
3
|
nn0red |
|
| 49 |
4
|
nn0red |
|
| 50 |
|
max1 |
|
| 51 |
48 49 50
|
syl2anc |
|
| 52 |
|
eluz2 |
|
| 53 |
45 47 51 52
|
syl3anbrc |
|
| 54 |
|
fzss2 |
|
| 55 |
53 54
|
syl |
|
| 56 |
55
|
adantr |
|
| 57 |
|
elfznn0 |
|
| 58 |
57 24
|
sylan2 |
|
| 59 |
|
eldifn |
|
| 60 |
59
|
adantl |
|
| 61 |
|
eldifi |
|
| 62 |
61 19
|
syl |
|
| 63 |
62
|
adantl |
|
| 64 |
|
nn0uz |
|
| 65 |
|
peano2nn0 |
|
| 66 |
3 65
|
syl |
|
| 67 |
66 64
|
eleqtrdi |
|
| 68 |
|
uzsplit |
|
| 69 |
67 68
|
syl |
|
| 70 |
64 69
|
eqtrid |
|
| 71 |
3
|
nn0cnd |
|
| 72 |
|
ax-1cn |
|
| 73 |
|
pncan |
|
| 74 |
71 72 73
|
sylancl |
|
| 75 |
74
|
oveq2d |
|
| 76 |
75
|
uneq1d |
|
| 77 |
70 76
|
eqtrd |
|
| 78 |
77
|
ad2antrr |
|
| 79 |
63 78
|
eleqtrd |
|
| 80 |
|
elun |
|
| 81 |
79 80
|
sylib |
|
| 82 |
81
|
ord |
|
| 83 |
60 82
|
mpd |
|
| 84 |
5
|
ffund |
|
| 85 |
|
ssun2 |
|
| 86 |
85 70
|
sseqtrrid |
|
| 87 |
5
|
fdmd |
|
| 88 |
86 87
|
sseqtrrd |
|
| 89 |
|
funfvima2 |
|
| 90 |
84 88 89
|
syl2anc |
|
| 91 |
90
|
ad2antrr |
|
| 92 |
83 91
|
mpd |
|
| 93 |
7
|
ad2antrr |
|
| 94 |
92 93
|
eleqtrd |
|
| 95 |
|
elsni |
|
| 96 |
94 95
|
syl |
|
| 97 |
96
|
oveq1d |
|
| 98 |
62 23
|
sylan2 |
|
| 99 |
98
|
mul02d |
|
| 100 |
97 99
|
eqtrd |
|
| 101 |
56 58 100 18
|
fsumss |
|
| 102 |
4
|
nn0zd |
|
| 103 |
|
max2 |
|
| 104 |
48 49 103
|
syl2anc |
|
| 105 |
|
eluz2 |
|
| 106 |
102 47 104 105
|
syl3anbrc |
|
| 107 |
|
fzss2 |
|
| 108 |
106 107
|
syl |
|
| 109 |
108
|
adantr |
|
| 110 |
|
elfznn0 |
|
| 111 |
110 28
|
sylan2 |
|
| 112 |
|
eldifn |
|
| 113 |
112
|
adantl |
|
| 114 |
|
eldifi |
|
| 115 |
114 19
|
syl |
|
| 116 |
115
|
adantl |
|
| 117 |
|
peano2nn0 |
|
| 118 |
4 117
|
syl |
|
| 119 |
118 64
|
eleqtrdi |
|
| 120 |
|
uzsplit |
|
| 121 |
119 120
|
syl |
|
| 122 |
64 121
|
eqtrid |
|
| 123 |
4
|
nn0cnd |
|
| 124 |
|
pncan |
|
| 125 |
123 72 124
|
sylancl |
|
| 126 |
125
|
oveq2d |
|
| 127 |
126
|
uneq1d |
|
| 128 |
122 127
|
eqtrd |
|
| 129 |
128
|
ad2antrr |
|
| 130 |
116 129
|
eleqtrd |
|
| 131 |
|
elun |
|
| 132 |
130 131
|
sylib |
|
| 133 |
132
|
ord |
|
| 134 |
113 133
|
mpd |
|
| 135 |
6
|
ffund |
|
| 136 |
|
ssun2 |
|
| 137 |
136 122
|
sseqtrrid |
|
| 138 |
6
|
fdmd |
|
| 139 |
137 138
|
sseqtrrd |
|
| 140 |
|
funfvima2 |
|
| 141 |
135 139 140
|
syl2anc |
|
| 142 |
141
|
ad2antrr |
|
| 143 |
134 142
|
mpd |
|
| 144 |
8
|
ad2antrr |
|
| 145 |
143 144
|
eleqtrd |
|
| 146 |
|
elsni |
|
| 147 |
145 146
|
syl |
|
| 148 |
147
|
oveq1d |
|
| 149 |
115 23
|
sylan2 |
|
| 150 |
149
|
mul02d |
|
| 151 |
148 150
|
eqtrd |
|
| 152 |
109 111 151 18
|
fsumss |
|
| 153 |
101 152
|
oveq12d |
|
| 154 |
30 44 153
|
3eqtr4d |
|
| 155 |
154
|
mpteq2dva |
|
| 156 |
17 155
|
eqtr4d |
|